精英家教网 > 高中数学 > 题目详情
3.直线l1:x-2y+3=0与l2:x-y+1=0的夹角的大小为arctan$\frac{1}{3}$.(结果用反三角函数表示)

分析 先求出两条直线的斜率,再利用两条直线的夹角公式求得两条直线的夹角的大小.

解答 解:由于直线l1:x-2y+3=0与l2:x-y+1=0的斜率分别为$\frac{1}{2}$,1,设直线l1:x-2y+3=0与l2:x-y+1=0的夹角为θ,
则tanθ=|$\frac{\frac{1}{2}-1}{1+\frac{1}{2}×1}$|=$\frac{1}{3}$,∴θ=arctan$\frac{1}{3}$,
故答案为:arctan$\frac{1}{3}$.

点评 本题主要考查两条直线的夹角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}({x+\frac{1}{x}})$,g(x)=$\frac{1}{2}({x-\frac{1}{x}})$.
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)若直线l:ax+by+c=0(a,b,c为常数)与f(x)的图象交于不同的两点A、B,与g(x)的图象交于不同的两点C、D,求证:|AC|=|BD|;
(3)求函数F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合$S=\left\{{x\left|{|{x-1}|}\right.≤2,x∈R}\right\},T=\left\{{x\left|{\frac{5}{x+1}≥1}\right.,x∈z}\right\}$,则S∩T等于(  )
A.{x|0<x≤3,x∈z}B.{x|0≤x≤3,x∈z}C.{x|-1≤x≤0,x∈z}D.{x|-1≤x<0,x∈z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“|b|<2是“直线y=$\sqrt{3}$x+b与圆x2+y2-4y=0相交”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,则输出的结果为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(-a)=cos2a-$\frac{1}{2}$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=|x+2|B.y=|x|+2C.y=-x2+2D.$y={({\frac{1}{2}})^{|x|}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,其左顶点到上顶点的距离为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l是过椭圆右焦点F且斜率为k的直线,已知直线l交椭圆于M,N两点,若椭圆上存在一点P,满足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OP}$,求当$|{\overrightarrow{OP}}|=2|k|$时,k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题“?x0∈R,x02+ax0-4a<0”为假命题,则实数a的取值范围为(  )
A.[-16,0]B.(-16,0)C.[-4,0]D.(-4,0)

查看答案和解析>>

同步练习册答案