·ÖÎö £¨¢ñ£©ÀûÓÃÒÑÖªÌõ¼þͨ¹ýÍÖÔ²µÄ¼¸ºÎÁ¿µÄ¹ØÏµÇó³öa¡¢b£¬¼´¿ÉÇó½âÍÖÔ²·½³Ì£®
£¨¢ò£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÁªÁ¢·½³Ì×飬ͨ¹ýΤ´ï¶¨Àí£¬ÒÔ¼°ÏòÁ¿¹ØÏµ£¬¼´¿ÉÇó½âkµÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒâ$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\ \sqrt{{a^2}+{b^2}}=\sqrt{3}\end{array}\right.$-------------------£¨2·Ö£©
½âµÃ$\left\{\begin{array}{l}{a^2}=2\\{b^2}=1\end{array}\right.$----------------------------£¨3·Ö£©
ËùÒÔÍÖÔ²·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$----------------------------£¨4·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªF£¨1£¬0£©£¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©-----------------£¨5·Ö£©
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉ$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=k£¨x-1£©\end{array}\right.⇒$£¨1+2k2£©x2-4k2x+2k2-2=0-------£¨7·Ö£©
¡à${x_1}+{x_2}=\frac{{4{k^2}}}{{1+2{k^2}}}$£¬y1+y2=k£¨x1+x2-2£©=$\frac{-2k}{{1+2{k^2}}}$--------£¨8·Ö£©
ËùÒÔ$\overrightarrow{OP}=\frac{1}{¦Ë}£¨\overrightarrow{OM}+\overrightarrow{ON}£©$=$\frac{1}{¦Ë}£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©$=$£¨\frac{1}{¦Ë}•\frac{{4{k^2}}}{{1+2{k^2}}}£¬\frac{1}{¦Ë}•\frac{-2k}{{1+2{k^2}}}£©$-------£¨9·Ö£©
ÓɵãPÔÚÍÖÔ²ÉϵÃ$\frac{1}{2}•\frac{1}{¦Ë^2}•\frac{{16{k^4}}}{{{{£¨1+2{k^2}£©}^2}}}+\frac{1}{¦Ë^2}•\frac{{4{k^2}}}{{{{£¨1+2{k^2}£©}^2}}}=1$£¬
¼´$\frac{1}{2}•\frac{16{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}={¦Ë}^{2}$¡£¨1£©-----------£¨10·Ö£©
ÓÉ$|{\overrightarrow{OP}}|=2|k|$µÃ$\frac{1}{¦Ë^2}•\frac{{16{k^4}}}{{{{£¨1+2{k^2}£©}^2}}}+\frac{1}{¦Ë^2}•\frac{{4{k^2}}}{{{{£¨1+2{k^2}£©}^2}}}=4{k^2}$£¬
¼´$\frac{16{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}=4{k}^{2}{¦Ë}^{2}$¡£¨2£©---------------£¨11·Ö£©
ÓÉ£¨1£©£¨2£©ÏûÈ¥¦Ë2µÃ£º$4{k}^{2}•£¨\frac{8{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}£©=\frac{16{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}$£¬
¡à8k4+4k2=4k2+1£¬--------£¨13·Ö£©
¡à${k^4}=\frac{1}{8}$£¬¡à$k=¡À\frac{{\root{4}{2}}}{2}$----------------£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©=x3 | B£® | f£¨x£©=-x-1 | C£® | f£¨x£©=log2x | D£® | f£¨x£©=2x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{1}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com