12£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬Æä×󶥵㵽É϶¥µãµÄ¾àÀëΪ$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Ö±ÏßlÊǹýÍÖÔ²ÓÒ½¹µãFÇÒбÂÊΪkµÄÖ±Ïߣ¬ÒÑÖªÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÈôÍÖÔ²ÉÏ´æÔÚÒ»µãP£¬Âú×ã$\overrightarrow{OM}+\overrightarrow{ON}=¦Ë\overrightarrow{OP}$£¬Çóµ±$|{\overrightarrow{OP}}|=2|k|$ʱ£¬kµÄÖµ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÒÑÖªÌõ¼þͨ¹ýÍÖÔ²µÄ¼¸ºÎÁ¿µÄ¹ØÏµÇó³öa¡¢b£¬¼´¿ÉÇó½âÍÖÔ²·½³Ì£®
£¨¢ò£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÁªÁ¢·½³Ì×飬ͨ¹ýΤ´ï¶¨Àí£¬ÒÔ¼°ÏòÁ¿¹ØÏµ£¬¼´¿ÉÇó½âkµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒâ$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\ \sqrt{{a^2}+{b^2}}=\sqrt{3}\end{array}\right.$-------------------£¨2·Ö£©
½âµÃ$\left\{\begin{array}{l}{a^2}=2\\{b^2}=1\end{array}\right.$----------------------------£¨3·Ö£©
ËùÒÔÍÖÔ²·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$----------------------------£¨4·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªF£¨1£¬0£©£¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©-----------------£¨5·Ö£©
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉ$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=k£¨x-1£©\end{array}\right.⇒$£¨1+2k2£©x2-4k2x+2k2-2=0-------£¨7·Ö£©
¡à${x_1}+{x_2}=\frac{{4{k^2}}}{{1+2{k^2}}}$£¬y1+y2=k£¨x1+x2-2£©=$\frac{-2k}{{1+2{k^2}}}$--------£¨8·Ö£©

ËùÒÔ$\overrightarrow{OP}=\frac{1}{¦Ë}£¨\overrightarrow{OM}+\overrightarrow{ON}£©$=$\frac{1}{¦Ë}£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©$=$£¨\frac{1}{¦Ë}•\frac{{4{k^2}}}{{1+2{k^2}}}£¬\frac{1}{¦Ë}•\frac{-2k}{{1+2{k^2}}}£©$-------£¨9·Ö£©
ÓɵãPÔÚÍÖÔ²ÉϵÃ$\frac{1}{2}•\frac{1}{¦Ë^2}•\frac{{16{k^4}}}{{{{£¨1+2{k^2}£©}^2}}}+\frac{1}{¦Ë^2}•\frac{{4{k^2}}}{{{{£¨1+2{k^2}£©}^2}}}=1$£¬
¼´$\frac{1}{2}•\frac{16{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}={¦Ë}^{2}$¡­£¨1£©-----------£¨10·Ö£©
ÓÉ$|{\overrightarrow{OP}}|=2|k|$µÃ$\frac{1}{¦Ë^2}•\frac{{16{k^4}}}{{{{£¨1+2{k^2}£©}^2}}}+\frac{1}{¦Ë^2}•\frac{{4{k^2}}}{{{{£¨1+2{k^2}£©}^2}}}=4{k^2}$£¬
¼´$\frac{16{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}=4{k}^{2}{¦Ë}^{2}$¡­£¨2£©---------------£¨11·Ö£©
ÓÉ£¨1£©£¨2£©ÏûÈ¥¦Ë2µÃ£º$4{k}^{2}•£¨\frac{8{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}£©=\frac{16{k}^{4}}{{£¨1+2{k}^{2}£©}^{2}}+\frac{4{k}^{2}}{{£¨1+2{k}^{2}£©}^{2}}$£¬
¡à8k4+4k2=4k2+1£¬--------£¨13·Ö£©
¡à${k^4}=\frac{1}{8}$£¬¡à$k=¡À\frac{{\root{4}{2}}}{2}$----------------£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÒÑÖªÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ3£¬M£¬N·Ö±ðÊÇÀâAA1£¬ABÉϵĵ㣬ÇÒAM=AN=1£®
£¨1£©Ö¤Ã÷£ºM£¬N£¬C£¬D1ËÄµã¹²Ãæ£»
£¨2£©Æ½ÃæMNCD1½«´ËÕý·½Ìå·ÖΪÁ½²¿·Ö£¬ÇóÕâÁ½²¿·ÖµÄÌå»ý
Ö®±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ö±Ïßl1£ºx-2y+3=0Óël2£ºx-y+1=0µÄ¼Ð½ÇµÄ´óСΪarctan$\frac{1}{3}$£®£¨½á¹ûÓ÷´Èý½Çº¯Êý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁк¯ÊýÖУ¬Âú×ãf£¨xy£©=f£¨x£©f£¨y£©µÄµ¥µ÷µÝÔöº¯ÊýÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x3B£®f£¨x£©=-x-1C£®f£¨x£©=log2xD£®f£¨x£©=2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èô¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬ÇÒcos2¦Á+cos£¨$\frac{¦Ð}{2}$+2¦Á£©=$\frac{3}{10}$£¬Ôòtan¦Á£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{1}{4}$D£®$\frac{1}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Îªµ÷²éѧÉúÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äµÄÇé¿ö£¬Ä³Ð£ÊÕ¼¯µ½¸ßÈý£¨1£©°à20λѧÉúµÄÑù±¾Êý¾Ý£¨µ¥Î»£ºÐ¡Ê±£©£¬½«ËûÃǵÄÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼ä·ÖΪ6×飺[0£¬2£©£¬[2£¬4£©£¬[4£¬6£©£¬[6£¬8£©£¬[8£¬10£©£¬[10£¬12]¼ÓÒÔͳ¼Æ£¬µÃµ½ÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬Çó³ö¸Ã°àѧÉúµÄÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äµÄƽ¾ùÊýµÄ¹À¼ÆÖµ£»
£¨2£©ÈôÔڸðàÿÖÜÆ½¾ùÌåÓýÔ˶¯Ê±¼äµÍÓÚ4СʱµÄѧÉúÖÐÈÎÒâ³éÈ¡2ÈË£¬Çó³éÈ¡µ½Ô˶¯Ê±¼äµÍÓÚ2СʱµÄѧÉúµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªx£¬y¡ÊR£¬ÇÒx2+y2¡Ü1£¬Çó|x+y|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÍÖÔ²¹ý£¨0£¬2£©Ó루1£¬0£©Á½µã£¬Ö±ÏßlÓëÆä½»ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬ÈôÏòÁ¿$\overrightarrow{m}$=£¨2x1£¬y1£©£¬$\overrightarrow{n}$=£¨2x2£¬y2£©£¬ÇÒ$\overrightarrow{m}$¡Í$\overrightarrow{n}$£¬OÎª×ø±êÔ­µã£®
£¨1£©ÈôÖ±Ïßl¹ýÍÖÔ²µÄ½¹µãF£¨0£¬c£©£¨cΪ°ë½¹¾à£©£¬ÇóÖ±ÏßlµÄбÂÊkµÄÖµ£»
£¨2£©ÊÔÎÊ£º¡÷AOBµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿Èç¹ûÊÇ£¬Çë¸øÓèÖ¤Ã÷£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÉèµÈ²îÊýÁÐ|an|µÄǰnÏîºÍΪSn£¬ÇÒa2+a4=12£¬ÔòS5=30£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸