精英家教网 > 高中数学 > 题目详情
4.已知x,y∈R,且x2+y2≤1,求|x+y|的取值范围.

分析 利用参数方程,设x=cosα,y=sinα,结合辅助角公式,求|x+y|的取值范围.

解答 解:∵x2+y2≤1,
∴可设x=cosα,y=sinα,
∴|x+y|=|sinα+cosα|=$\sqrt{2}$|sin(α+$\frac{π}{4}$)|
∴|x+y|的取值范围[0,$\sqrt{2}$].

点评 本题重点考查了圆的参数方程、辅助角公式等知识,属于中档题,准确把握圆的参数方程是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合$S=\left\{{x\left|{|{x-1}|}\right.≤2,x∈R}\right\},T=\left\{{x\left|{\frac{5}{x+1}≥1}\right.,x∈z}\right\}$,则S∩T等于(  )
A.{x|0<x≤3,x∈z}B.{x|0≤x≤3,x∈z}C.{x|-1≤x≤0,x∈z}D.{x|-1≤x<0,x∈z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=|x+2|B.y=|x|+2C.y=-x2+2D.$y={({\frac{1}{2}})^{|x|}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,其左顶点到上顶点的距离为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l是过椭圆右焦点F且斜率为k的直线,已知直线l交椭圆于M,N两点,若椭圆上存在一点P,满足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OP}$,求当$|{\overrightarrow{OP}}|=2|k|$时,k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下表记录了某学生进入高三以来各次数学考试的成绩
考试第次123456789101112
成绩(分)657885878899909493102105116
将第1次到第12次的考试成绩依次记为a1,a2,…,a12.图2是统计上表中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)为R上的奇函数,当x>0时,f(x)=$\frac{1}{2}$(|x+cosα|+|x+2cosα|+3cosα)(-π≤α≤π),若对任意实数x∈R,都有f(x-3)≤f(x)恒成立,则实数a的取值范围是(  )
A.[$\frac{5π}{6}$,π]B.[-π,-$\frac{2π}{3}$]C.[-$\frac{5π}{6}$,$\frac{5π}{6}$]D.[-$\frac{2π}{3},\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+mx2-m2x+2,g(x)=alnx,a、m∈R.
(1)若m<0时,试求函数y=f(x)的单调递减区间;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题“?x0∈R,x02+ax0-4a<0”为假命题,则实数a的取值范围为(  )
A.[-16,0]B.(-16,0)C.[-4,0]D.(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,AB、AC是⊙O的两条切线,切点分别为B、C.若∠BAC=60°,BC=6,则⊙O的半径为2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案