精英家教网 > 高中数学 > 题目详情
11.“|b|<2是“直线y=$\sqrt{3}$x+b与圆x2+y2-4y=0相交”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由直线y=$\sqrt{3}$x+b与圆x2+y2-4y=0相交,可得$\frac{|b-2|}{2}$<2,解出即可判断出.

解答 解:圆x2+y2-4y=0配方为:x2+(y-2)2=4,可得圆心C(0,2),半径R=2.
若直线y=$\sqrt{3}$x+b与圆x2+y2-4y=0相交,则$\frac{|b-2|}{2}$<2,
解得-2<b<6,
因此“|b|<2是“直线y=$\sqrt{3}$x+b与圆x2+y2-4y=0相交”的充分不必要条件.
故选:A.

点评 本题考查了直线与圆的位置关系、点到直线的距离公式、充要条件的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.二项式(2x-1)5的展开式中,x2项的系数为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.
(1)证明:M,N,C,D1四点共面;
(2)平面MNCD1将此正方体分为两部分,求这两部分的体积
之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=|x2-4x+3|-kx-2恰有3个零点,则实数k的值为(  )
A.$-\frac{2}{3}$或-2B.$-\frac{2}{3}$或$4+2\sqrt{5}$C.$-\frac{2}{3}$或$4-2\sqrt{5}$D.$-\frac{2}{3}$或$4+2\sqrt{5}$或$4-2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$;
②任意x∈[0,$\frac{π}{2}$],都有f($\frac{π}{2}$-x)+f($\frac{π}{2}$+x)=4;
③任意x1,x2∈($\frac{π}{2}$,π),且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.
其中所有正确结论的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数$g(x)=f(x+\frac{π}{12})-f(x+\frac{π}{3})$的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l1:x-2y+3=0与l2:x-y+1=0的夹角的大小为arctan$\frac{1}{3}$.(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,满足f(xy)=f(x)f(y)的单调递增函数是(  )
A.f(x)=x3B.f(x)=-x-1C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆过(0,2)与(1,0)两点,直线l与其交于A(x1,y1),B(x2,y2)两点,若向量$\overrightarrow{m}$=(2x1,y1),$\overrightarrow{n}$=(2x2,y2),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,O为坐标原点.
(1)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案