精英家教网 > 高中数学 > 题目详情
1.二项式(2x-1)5的展开式中,x2项的系数为-40.

分析 直接写出二项展开式的通项,由x得次数为2求得r,则x2项的系数可求.

解答 解:二项式的通项${T}_{r+1}={C}_{5}^{r}•(2x)^{r}•(-1)^{5-r}$=$(-1)^{5-r}•{2}^{r}•{C}_{5}^{r}•{x}^{r}$,
由r=2,得x2项的系数为$(-1)^{3}•{2}^{2}•{C}_{5}^{2}=-40$.
故答案为:-40.

点评 本题考查了二项式定理,考查了二项式的系数,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知F1,F2为椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的左右焦点,O是坐标原点,过F1的直线l与椭圆C交于A,B两点.
(1)若椭圆上存在点P,使得四边形OAPB是平行四边形,求直线l的方程;
(2)是否存在这样的直线l,使四边形OAPB是矩形,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}$+a仅一个零点,则a的取值范围为(  )
A.$(0,\frac{1}{6})$B.$(-\frac{1}{6},0)$C.$(-∞,0)∪(\frac{1}{6},+∞)$D.$(-∞,\frac{1}{6})∪(0,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若logxy=-2,则x2+y的值域为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)是定义在R上的奇函数,且对任意的实数x≥0,总有正常数T,使得f(x+T)=f(x)+T成立,则称f(x)具有“性质p”,已知函数g(x)具有“性质p”,且在[0,T]上,g(x)=x2;若当x∈[-T,4T]时,函数y=g(x)-kx恰有8个零点,则实数k=4$\sqrt{3}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设拋物线C:x2=4y的焦点为F,经过点P(l,5)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,则丨AF|+|BF|=(  )
A.12B.8C.4D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}({x+\frac{1}{x}})$,g(x)=$\frac{1}{2}({x-\frac{1}{x}})$.
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)若直线l:ax+by+c=0(a,b,c为常数)与f(x)的图象交于不同的两点A、B,与g(x)的图象交于不同的两点C、D,求证:|AC|=|BD|;
(3)求函数F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,内角A、B、C的对边分别为a、b、c,已知c=3bcosC+3ccosB.
(Ⅰ)求$\frac{sinC}{sinA}$的值;
(Ⅱ)若cosB=-$\frac{1}{3}$,b=2$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“|b|<2是“直线y=$\sqrt{3}$x+b与圆x2+y2-4y=0相交”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案