精英家教网 > 高中数学 > 题目详情
20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=$\frac{2}{3}$相切.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.

分析 (1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:$\frac{x}{a}$+y=1,化为:x+ay-a=0,由于直线l与圆x2+y2=$\frac{2}{3}$相切,可得$\frac{|a|}{\sqrt{1+{a}^{2}}}$=$\sqrt{\frac{2}{3}}$,a>0,解得a,即可得出椭圆C的方程.
(2)对直线AB的斜率分类讨论:当直线AB的斜率不存在时,利用k1+k2=2,及其斜率计算公式即可得出.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),直线方程与椭圆方程联立化为关于x的一元二次方程,利用根与系数的关系、斜率计算公式即可得出.

解答 解:(1)椭圆C的右顶点(a,0),上顶点(0,1),
设直线l的方程为:$\frac{x}{a}$+y=1,化为:x+ay-a=0,
∵直线l与圆x2+y2=$\frac{2}{3}$相切,
∴$\frac{|a|}{\sqrt{1+{a}^{2}}}$=$\sqrt{\frac{2}{3}}$,a>0,解得a=$\sqrt{2}$.
∴椭圆C的方程为$\frac{x^2}{2}+{y^2}=1$.
(2)当直线AB的斜率不存在时,
设A(x0,y0),则B(x0,-y0),
由k1+k2=2得$\frac{{{y_0}-1}}{x_0}+\frac{{-{y_0}-1}}{x_0}=2$,得x0=-1.
当直线AB的斜率存在时,
设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),$\left\{{\begin{array}{l}{\frac{x^2}{2}+{y^2}=1}\\{y=kx+m}\end{array}}\right.⇒({1+2{k^2}}){x^2}+4kmx+2{m^2}-2=0$,
得${x_1}+{x_2}=\frac{-4km}{{1+2{k^2}}},{x_1}•{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}$,
∴${k_1}+{k_2}=2⇒\frac{{{y_1}-1}}{x_1}+\frac{{{y_2}-1}}{x_2}=2⇒\frac{{({k{x_2}+m-1}){x_1}+({k{x_1}+m-1}){x_2}}}{{{x_1}{x_2}}}=2$,
即$({2-2k}){x_2}{x_1}=({m-1})({{x_2}+{x_1}})⇒({2-2k})({2{m^2}-2})=({m-1})({-4km})$,
由m≠1,(1-k)(m+1)=-km⇒k=m+1,
即y=kx+m=(m+1)x+m⇒m(x+1)=y-x,
故直线AB过定点(-1,-1).

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、直线与圆相切的性质、一元二次方程的根与系数的关系、斜率计算公式、点到直线的距离公式,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面ABCD是菱形,∠DAB=60°,E是AD的中点,PA=PD.
(I)求证:平面PBE⊥平面ABCD;
(Ⅱ)若平面PBC⊥平面ABCD,PB=AB,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算($\frac{1}{2}$)-3+20070+(-3)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,椭圆C过点P(1,$\frac{{\sqrt{2}}}{2}}$),直线PF1交y轴于Q,且$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{QO}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知定义在R上的函数f(x)的图象关于y轴对称,且满足f(x+2)=f(-x),若当x∈[0,1]时,f(x)=3x-1,则f(log${\;}_{\frac{1}{3}}$10)的值为$\frac{10}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a为实数,若复数z=a2-1+(a+1)i为纯虚数,则(a+i2015)(1+i)=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图是一个算法流程图,则输出的n的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3+bx2+cx+d(b,c,d为常数),当x∈(0,1)时取得极大值,当x∈(1,2)时取极小值,则(b+$\frac{1}{2}$)2+(c-3)2的取值范围是(5,25).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{a{e}^{x}}{x}$+x.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线经过点(0,1),求实数a的值.
(Ⅱ)求证:当a<0时,函数f(x)至多有一个极值点.
(Ⅲ)是否存在实数a,使得函数f(x)在定义域上的极小值大于极大值?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案