分析 利用平面向量的数量积运算法则表示即可.
解答 解:∵$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为
∠AOB,
∴$\overrightarrow{OA}$=(cosα,sinα),$\overrightarrow{OB}$=(cosβ,sinβ),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,
则$\overrightarrow{OA}$•$\overrightarrow{OB}$=|$\overrightarrow{OA}$||$\overrightarrow{OB}$cos∠AOB,
即cos∠AOB=cosαcosβ+sinαsinβ,
则cos$\frac{π}{12}$=cos($\frac{π}{3}$-$\frac{π}{4}$)=cos$\frac{π}{3}$cos$\frac{π}{4}$+sin$\frac{π}{3}$sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}×\frac{1}{2}+\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4}$.
点评 此题考查了两角和与差的余弦函数公式,平面向量的数量积运算,以及特殊角的三角函数值,熟练掌握公式及法则是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{9}{2}$ | B. | -$\frac{3}{2}$ | C. | 3 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,5,8) | B. | (2,-5,8) | C. | (2,5,-8) | D. | (-2,-5,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | [0,1) | C. | [0,$\frac{1}{2}$) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com