精英家教网 > 高中数学 > 题目详情
某商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系是p=
t+20,0<t<25,t∈T
80,25≤t≤30,t∈N
,该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,t∈N),
(Ⅰ)写出该种商品的日销售额S(元)与时间t(天)的函数关系;
(Ⅱ)求日销售额S的最大值.
考点:分段函数的应用
专题:函数的性质及应用
分析:(Ⅰ)直接利用该种商品的日销售额S(元)与时间t(天)的乘积列出函数关系即可;
(Ⅱ)利用分段函数通过二次函数的最值的求法,即可求日销售额S的最大值.
解答: 解:(Ⅰ)依题意得,则S=P•Q
∴S=
-t2+20t+800,0<t<25,t∈N
-80t+3200,25≤t≤30,t∈N


(Ⅱ)S=
-(t-10)2+900,0<t<25,t∈N
-80t+3200,25≤t≤30,t∈N

当0<t<25,t∈N,t=10时,Smax=900(元);
当25≤t≤30,t∈N,t=25时Smax=1200(元).
由1200>900,知第25天时,日销售额最大Smax=1200(元),
点评:本题考查分段函数的应用,函数的最值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

α,β是两个平面,l是直线,给出以下四个命题:
①若l⊥α,α⊥β,则l∥β,
②若l∥α,α∥β,则l∥β,
③l⊥α,α∥β,则l⊥β,
④l∥α,α⊥β,则l⊥β,
其中真命题有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=tanx(
π
4
≤x≤
4
,且x≠
π
2
)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:sin198°•sin228°+sin252°•sin318°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Ai(i=1,2,3,…,n,n≥3,n∈N*)是△AOB所在的平面内的n个相异点,且
OAi
OB
=
OA
OB
.给出下列命题:
①|
OA1
|=|
OA2
|=…=|
OAn
|=
OA

②|
OAi
|的最小值不可能是|
OB
|;
③点A,A1,A2,…,An在一条直线上;
④向量
OA
OAi
在向量
OB
的方向上的投影必相等.
其中正确命题的序号是
 
.(请填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1经过点A(3,m),B(m-1,2),直线l2经过点C(1,2),D(-2,m+2).
(1)当m=6时,试判断直线l1与l2的位置关系;
(2)若l1⊥l2,试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把一系列向量ai(i=1,2,3,…n)按次序排成一列,称之为向量列,记作{
an
}.已知非零的向量列满足:
a1
=(x1y1)
an
=(xn,yn)=
1
2
(xn-1-yn-1xn-1+yn-1)
(n≥2).
(1)证明数列{|
an
|}
是等比数列;
(2)设θn表示向量
an-1
an
的夹角的弧度数(n≥2),若bn=
π
4n(n-1)θn
,Sn=b2+b3+…+bn,求Sn
(3)设
a1
=(1,2)
,把
a1
a2
,…,
an
中所有与
a1
共线的向量按原来的顺序排成一列,记为
d1
d2
,…,
dn
,…,令
ODn
=
d1
+
d2
+…+
dn
,O为坐标原点,求点列{Dn}的极限点D的坐标.(注:若点Dn坐标为(tn,vn),
lim
n→∞
tn
=t,
lim
n→∞
vn
=v,则点D(t,v)为点列{Dn}的极限点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于直线m、n和平面α,下面命题中的真命题是(  )
A、如果m?α,n?α,m、n是异面直线,那么n∥α
B、如果m?α,n与α相交,那么m、n是异面直线
C、如果m?α,n∥α,m、n共面,那么m∥n
D、如果m∥α,n∥α,m、n共面,那么m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+e-x,若曲线y=f(x)上在点P(x0,f(x0))处的切线斜率为
3
2
,则 x0=
 

查看答案和解析>>

同步练习册答案