| A. | a>b>c | B. | c>a>b | C. | c>b>a | D. | b>a>c |
分析 由(x-1)f′(x)<0,可得当x>1时,f′(x)<0,此时函数f(x)单调递减;当x<1时,f′(x)>0,此时函数f(x)单调递增.又f(1.9+x)=f(0.1-x) 得到f(x)=f(2-x),可得f(3)=f[2-(-1)]=f(-1).利用单调性即可得出.
解答 解:∵(x-1)f′(x)<0,
∴当x>1时,f′(x)<0,此时函数f(x)单调递减;
当x<1时,f′(x)>0,此时函数f(x)单调递增.
又f(1.9+x)=f(0.1-x),
∴f(x)=f(2-x),
∴f(3)=f[2-(-1)]=f(-1),
∵-1<0$<\frac{1}{2}$,
∴f(-1)<f(0)<f($\frac{1}{2}$),
∴b>a>c,
故选:D.
点评 本题的考点是函数的单调性与导数的关系,主要考查函数的单调性与其导函数的正负之间的关系.解答关键是利用导数工具判断函数的单调性,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)=sin$\frac{π}{8}$(x+1) | B. | g(x)=sin($\frac{π}{2}$x-$\frac{π}{4}$) | C. | g(x)=sin($\frac{π}{8}$x+1) | D. | g(x)=sin($\frac{π}{2}$x+$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{300}$ | C. | $\frac{1}{2500}$ | D. | $\frac{1}{3000}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=3,b=3,c=4 | B. | a=4,b=5,c=6 | C. | a=4,b=6,c=7 | D. | a=3,b=3,c=5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com