精英家教网 > 高中数学 > 题目详情
3.若函数f(x)在定义域R内可导,f(1.9+x)=f(0.1-x)且(x-1)f′(x)<0,a=f(0),b=f($\frac{1}{2}$),c=f(3),则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.c>b>aD.b>a>c

分析 由(x-1)f′(x)<0,可得当x>1时,f′(x)<0,此时函数f(x)单调递减;当x<1时,f′(x)>0,此时函数f(x)单调递增.又f(1.9+x)=f(0.1-x) 得到f(x)=f(2-x),可得f(3)=f[2-(-1)]=f(-1).利用单调性即可得出.

解答 解:∵(x-1)f′(x)<0,
∴当x>1时,f′(x)<0,此时函数f(x)单调递减;
当x<1时,f′(x)>0,此时函数f(x)单调递增.
又f(1.9+x)=f(0.1-x),
∴f(x)=f(2-x),
∴f(3)=f[2-(-1)]=f(-1),
∵-1<0$<\frac{1}{2}$,
∴f(-1)<f(0)<f($\frac{1}{2}$),
∴b>a>c,
故选:D.

点评 本题的考点是函数的单调性与导数的关系,主要考查函数的单调性与其导函数的正负之间的关系.解答关键是利用导数工具判断函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)若cos($\frac{π}{6}$+α)=$\frac{\sqrt{3}}{3}$,求tan($\frac{5}{6}$π-α)的值.
(2)已知$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(-1,3),$\overrightarrow{c}$=(7,-11),x$\overrightarrow{a}$+y$\overrightarrow{b}$=$\overrightarrow{c}$,试求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a1,a2,…,an∈R+,且a12+a22+…+an2=1(n∈N*).
(1)求证:a1a2+a2a3+…+an-1an+ana1≤1;
(2)求证:a1+a2+…+an≤$\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,-$\frac{π}{2}$<ϕ<$\frac{π}{2}$),其部分图象如下图所示,将f(x)的图象纵坐标不变,横坐标变成原来的$\frac{1}{2}$倍,再向右平移1个单位得到g(x)的图象,则函数g(x)的解析式为(  )
A.g(x)=sin$\frac{π}{8}$(x+1)B.g(x)=sin($\frac{π}{2}$x-$\frac{π}{4}$)C.g(x)=sin($\frac{π}{8}$x+1)D.g(x)=sin($\frac{π}{2}$x+$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是一个平面内的三个向量,其中$\overrightarrow a$=(1,3).
(1)若|$\overrightarrow c$|=2$\sqrt{10}$,$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$及$\overrightarrow a•\overrightarrow c$;
(2)若|$\overrightarrow b$|=$\frac{{\sqrt{10}}}{2}$,且$\overrightarrow a$-3$\overrightarrow b$与2$\overrightarrow a$+$\overrightarrow b$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+x-ln(1+x)
(I)讨论函数f(x)的单调性;
(Ⅱ)若关于x的方程f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(Ⅲ)证明:对任意的正整数n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某学校有学生2500人,教师350人,后勤职工150人,为了调查对食堂服务的满意度,用分层抽样从中抽取300人,则学生甲被抽到的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{300}$C.$\frac{1}{2500}$D.$\frac{1}{3000}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC,角A,B,C所对的边分别为a,b,c,则以下为钝角三角形的是(  )
A.a=3,b=3,c=4B.a=4,b=5,c=6C.a=4,b=6,c=7D.a=3,b=3,c=5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若复数z满足(1+2i)z=5(i为虚数单位),则复数z的虚部是-2.

查看答案和解析>>

同步练习册答案