7£®£¨1£©ÔÚÇø¼ä[1£¬5]ºÍ[2£¬4]ÉÏ·Ö±ðÈÎȡһ¸öÕûÊý£¬¼ÇΪa£¬b£¬Ôò·½³Ì$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$±íʾ½¹µãÔÚxÖáÉÏÇÒÀëÐÄÂÊСÓÚ$\frac{{\sqrt{3}}}{2}$µÄÍÖÔ²µÄ¸ÅÂÊΪ¶àÉÙ£¿
£¨2£©ÔÚÇø¼ä[1£¬5]ºÍ[2£¬4]ÉÏ·Ö±ðÈÎȡһ¸öʵÊý£¬¼ÇΪa£¬b£¬Ôò·½³Ì$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$±íʾ½¹µãÔÚxÖáÉÏÇÒÀëÐÄÂÊСÓÚ$\frac{{\sqrt{3}}}{2}$µÄÍÖÔ²µÄ¸ÅÂÊΪ¶àÉÙ£¿

·ÖÎö £¨1£©ÏÈÇó³öÇø¼ä[1£¬5]ºÍ[2£¬4]ÉÏ·Ö±ðÈÎȡһ¸öÕûÊýµÄ×ܵÄʼþ×ÜÊý£¬ÔÙÇó³öÂú×ãÌõ¼þµÄ»ù±¾Ê¼þµÄ¸öÊý£¬¸ù¾Ý¸ÅÂʹ«Ê½¼´¿ÉÇó³ö£¬
£¨2£©Èçͼ£¬Çó³ö¾ØÐεÄÃæ»ýΪ8£¬ÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{15}{4}$£¬¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©a¿ÉÈ¡1£¬2£¬3£¬4£¬5£¬b¿ÉÈ¡2£¬3£¬4£¬¹Ê¿ÉÒÔ¹¹³É15¸öÇúÏß·½³Ì£¬ÓÖ$\left\{\begin{array}{l}a£¾b\\ \frac{{\sqrt{{a^2}-{b^2}}}}{a}£¼\frac{{\sqrt{3}}}{2}\end{array}\right.$
¼´$\left\{\begin{array}{l}a£¾b\\ \frac{b}{a}£¾\frac{1}{2}\end{array}\right.$£¬Ôò$\left\{\begin{array}{l}a=3\\ b=2\end{array}\right.»ò\left\{\begin{array}{l}a=4\\ b=3\end{array}\right.»ò\left\{\begin{array}{l}a=5\\ b=3\end{array}\right.»ò\left\{\begin{array}{l}a=5\\ b=4\end{array}\right.$£¬¹ÊP=$\frac{4}{15}$£»
£¨2£©Èçͼ£¬a£¬b¿É¹¹³É¾ØÐΣ¬
ÓÖ$\left\{\begin{array}{l}a£¾b\\ \frac{b}{a}£¾\frac{1}{2}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}a£¾b\\ 2b£¾a\end{array}\right.$£¬¼´ÒõÓ°ÇøÓò£¬
Ôò$P=\frac{S_Òõ}{{{S_{¾ØÐÎ}}}}=\frac{{\frac{15}{4}}}{8}=\frac{15}{32}$£®

µãÆÀ ±¾Ì⿼²éÁ˼¸ºÎ¸ÅÐ͹«Ê½µÄÔËÓ㬼¸ºÎ¸ÅÐ͵ĸÅÂʹÀË㹫ʽÖеġ°¼¸ºÎ¶ÈÁ¿¡±£¬¿ÉÒÔΪÏ߶γ¤¶È¡¢Ãæ»ý¡¢Ìå»ýµÈ£¬¶øÇÒÕâ¸ö¡°¼¸ºÎ¶ÈÁ¿¡±Ö»Óë¡°´óС¡±Óйأ¬¶øÓëÐÎ×´ºÍλÖÃÎ޹أ®½â¾öµÄ²½Öè¾ùΪ£ºÇó³öÂú×ãÌõ¼þAµÄ»ù±¾Ê¼þ¶ÔÓ¦µÄ¡°¼¸ºÎ¶ÈÁ¿¡±N£¨A£©£¬ÔÙÇó³ö×ܵĻù±¾Ê¼þ¶ÔÓ¦µÄ¡°¼¸ºÎ¶ÈÁ¿¡±N£¬×îºó¸ù¾Ý¹«Ê½½â´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=|2x-1|+|x+1|-aµÄͼÏóÓëxÖáÓÐÇÒ½öÓÐÒ»¸ö½»µã£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Èôm£¬n¡Ê[-a£¬a]£¬ÇóÖ¤£º2|m+n|£¼|4+mn|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¼ÆË㣺$\frac{tan68¡ã+tan52¡ã}{1-tan68¡ãtan52¡ã}$=$-\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼÔÚ³¤·½ÐÎABCDÖУ¬$\overrightarrow{AB}=\overrightarrow a£¬\overrightarrow{AD}=\overrightarrow b£¬N$ÊÇCDµÄÖе㣬MÊÇÏß¶ÎABÉϵĵ㣬$|{\overrightarrow a}|=2£¬|{\overrightarrow b}|=1$£®
£¨1£©ÈôMÊÇABµÄÖе㣬ÇóÖ¤£º$\overrightarrow{AN}$Óë$\overrightarrow{CM}$¹²Ïߣ»
£¨2£©ÔÚÏß¶ÎABÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃ$\overrightarrow{BD}$Óë$\overrightarrow{CM}$´¹Ö±£¿Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£¬Èô´æÔÚÇëÇó³öMµãµÄλÖã»
£¨3£©Èô¶¯µãPÔÚ³¤·½ÐÎABCDÉÏÔ˶¯£¬ÊÔÇó$\overrightarrow{AP}•\overrightarrow{AB}$µÄ×î´óÖµ¼°È¡µÃ×î´óֵʱPµãµÄλÖã®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®É躯Êý$f£¨x£©=\left\{\begin{array}{l}{2^{-x}}£¬x£¼1\\{log_4}x£¬x£¾1\end{array}\right.$£¬Âú×ã$f£¨x£©=\frac{1}{4}$µÄxµÄÖµÊÇ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÇóÖµ£ºlog23•log57•log35•log74=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Éèt=2x+y£¬ÆäÖÐx£¬yÂú×ã$\left\{\begin{array}{l}x+y-2¡Ý0\\ x-2y+4¡Ý0\\ 2x-y-4¡Ü0\end{array}\right.$£¬ÔòtµÄ×î´óֵΪ12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔڵȲîÊýÁÐ{an}ÖУ¬ÒÑÖªa4+a7=16£¬Ôò¸ÃÊýÁÐǰ11ÏîºÍS11=£¨¡¡¡¡£©
A£®58B£®88C£®143D£®176

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èô$\overrightarrow m=£¨¦Ë£¬2£¬3£©$ºÍ$\overrightarrow n=£¨1£¬-3£¬1£©$·Ö±ðÎªÆ½Ãæ¦ÁºÍÆ½Ãæ¦ÂµÄÒ»¸ö·¨ÏòÁ¿£¬ÇÒ¦Á¡Í¦Â£¬ÔòʵÊý¦Ë=3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸