精英家教网 > 高中数学 > 题目详情
6.已知A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则A∩B的元素个数是2.

分析 构成方程组,即可求出交点,即可做出判断.

解答 解:由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{x+y=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,
∴A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则A∩B的元素个数是2个,
故答案为:2

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=7,c=5,则$\frac{sinA}{sinC}$的值是(  )
A.$\frac{7}{5}$B.$\frac{5}{7}$C.$±\frac{7}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列说法中,正确说法的个数是③.
①△ABC为直角三角形是其三边关系a2+b2=c2的必要条件;②tanA=tanB是A=B的充分条件;③x2-2x-3=0是x=3的必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组中的两个函数是同一函数的为(  )
①y=$\frac{(x+3)(x-5)}{x+3}$,y=x-5,
②y=x2-1,y=$\sqrt{({x}^{2}-1)^{2}}$;
③y=x2-1,y=$\root{3}{({x}^{2}-1)^{3}}$,
④y=($\sqrt{2x-5}$)2,y=2x-5.
A.B.C.②④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线f(x)=$\frac{2}{{{x^2}-1}}$、直线x=2、x=3以及x轴所围成的封闭图形的面积是(  )
A.ln2B.ln3C.2ln2D.$ln\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为(  ) 
A.$\frac{8}{3}$B.$\frac{4}{3}$C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.Sn为{an}的前n项和,已知a1=1,Sn=n•an+1+2n,则数列{$\frac{1}{{a}_{n}-{a}_{n+1}}$}的前n项和Tn的表达式为Tn=2-$(\frac{1}{2})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an},{bn}满足a1=b1=1,a2=3,Sn为数列{an}的前n项和,且Sn+1+Sn=2(Sn+1)(n≥2,n∈N*),又b1+2b2+22b3+…+2n-1bn-1+2n-1bn=an对任意n∈N*都成立.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=Asin(ω•x+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则此函数的解析式为y=3sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案