精英家教网 > 高中数学 > 题目详情
12.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.
(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠DAE=25°,求证:DA2=DC•BP.

分析 (1)由弦切角定理得∠ACB=∠PAB=25°,从而∠ABC=65°,由此利用四边形ABCD内接于⊙O,能求出∠D.
(2)由∠DAE=25°,∠ACD=∠PAB,∠D=∠PBA,从而△ADC∽△PBA,由此能证明DA2=DC•BP.

解答 解:(1)∵EP与⊙O相切于点A,∴∠ACB=∠PAB=25°,
又BC是⊙O的直径,∴∠ABC=65°,
∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,
∴∠D=115°.
证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB,∠D=∠PBA,
∴△ADC∽△PBA,∴$\frac{DA}{BP}=\frac{DC}{BA}$,
又DA=BA,∴DA2=DC•BP.

点评 本题考查角的大小的求法,考查一线段平方是另两线段乘积的证明,是中档题,解题时要认真审题,注意弦切角定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在正三棱柱ABC-A1B1C1中,已知AB=2,D是棱BB1的中点,且BD=1,则C1与平面ADC的距离为(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.“80后文艺膏年小张在”祭我们逝去的青春“系列活动中,设计了一个与弹珠有关的玩具模型,它是由一个长方体和一个球焊接而成,如图所示,该几何体的球半径为R,其长方体的长和宽都是6R,高为$\frac{3}{2}$R:
(1)求这个模型的表面积;(用R表示,焊按处对面积的影响忽略不计)
(2)若R=10cm,现在想为该模型涂色,已知每涂1m2需要涂料0.5kg,则小张应该准备多少涂料?(考虑过程中涂料可能没完全利用,这里的π取3.5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在直三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=1,则点A到平面A1BC的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△ABC是直角三角形,∠ABC=90°,AP⊥平面ABC,且AP=AB,点D是PB的中点,点E是PC上的一点,
(1)当DE∥BC时,求证:直线PB⊥平面ADE;
(2)当DE⊥PC时,求证:直线PC⊥平面ADE;
(3)当AB=BC时,求二面角A-PC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.四棱锥E-ABCD中,AD∥BC,AD=AE=2BC=2AB=2,AB⊥AD,平面EAD⊥平面ABCD,点F为DE的中点.
(1)求证:CF∥平面EAB;
(2)若CF⊥AD,求二面角D-CF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,等腰梯形ABCD中,AD∥BC,且P是平面ABCD外一点,P在平面ABCD上的射影O恰在AD上,OB=OP=$\sqrt{3}$OA=$\sqrt{3}$,AB=BC=2.
(1)证明:PD⊥BO;
(2)若过点C与平面PAB平行的平面交PD于点E,求PE长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若“命题p:?x0∈R,x0<2”,则“命题¬p:?x∈R,x≥2”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2FE=1,点P是棱DF的中点.
(1)求证:AD⊥BF;
(2)求点B到面PCD的距离.

查看答案和解析>>

同步练习册答案