【题目】已知函数f(x)=|x|(x﹣a),a为实数.
(1)若函数f(x)为奇函数,求实数a的值;
(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;
(3)是否存在实数a(a<0),使得f(x)在闭区间上的最大值为2,若存在,求出a的值;若不存在,请说明理由.
【答案】(1) a=0.(2)a≤0(3)a=﹣3.
【解析】试题分析:(1)因为f(x)为奇函数,所以f(﹣x)=﹣f(x),根据函数解析式,化简式子得2a|x|=0对任意x∈R恒成立,求得 ;(2)当 时,f(x)=|x|(x﹣a)可去掉绝对值号得f(x)=x(x﹣a),其对称轴为 ,要使函数f(x)在[0,2]上单调递增,由二次函数的图像可得 ,求 的范围。(3)当 时, 的解析式去掉绝对值号可得 ,因为f(x)在闭区间上的最大值为2,由特殊值 ,限定 的范围,因为函数的对称轴为 ,因为a<0,所以函数在(0,+∞)上递增,所以,所以必在区间[﹣1,0]上取最大值2,讨论函数在[﹣1,0]上的单调性,最大值等于2,可求实数 的值。
试题解析:(1)因为奇函数f(x)定义域为R,
所以f(﹣x)=﹣f(x)对任意x∈R恒成立,
即|﹣x|(﹣x﹣a)=﹣|x|(x﹣a),即|x|(﹣x﹣a+x﹣a)=0,
即2a|x|=0对任意x∈R恒成立,
所以a=0.
(2)因为x∈[0,2],所以f(x)=x(x﹣a),
显然二次函数的对称轴为,由于函数f(x)在[0,2]上单调递增,
所以,
即a≤0(若分a<0,a=0,a>0三种情况讨论即可)
(3)∵a<0,,
∴f(﹣1)=﹣1﹣a≤2,∴﹣a≤3(先用特殊值约束范围)
∴,f(x)在(0,+∞)上递增,
∴f(x)必在区间[﹣1,0]上取最大值2.
当,即a<﹣2时,则f(﹣1)=2,a=﹣3成立
当,即0>a≥﹣2时,,则(舍)
综上,a=﹣3.
科目:高中数学 来源: 题型:
【题目】某DVD光盘销售部每天的房租、人员工资等固定成本为300元,每张DVD光盘的进价是6元,销售单价与日均销售量的关系如表所示:
销售单价(元) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
日均销售量(张) | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
(1)请根据以上数据作出分析,写出日均销售量P(x)(张)关于销售单价x(元)的函数关系式,并写出其定义域;
(2)问这个销售部销售的DVD光盘销售单价定为多少时才能使日均销售利润最大?最大销售利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=.
(1)求f(2)与f, f(3)与f;
(2)由(1)中求得结果,你能发现f(x)与f有什么关系?并证明你的发现;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线: ,曲线: (为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线, 的极坐标方程;
(Ⅱ)曲线: (为参数, , )分别交, 于, 两点,当取何值时, 取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数在区间上单调递增;函数在其定义域上存在极值.
(1)若为真命题,求实数的取值范围;
(2)如果“或”为真命题,“且”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,为自然对数的底数),是的导函数.
(Ⅰ)当时,求证:;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大,最大月收益是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com