精英家教网 > 高中数学 > 题目详情
当实数m为何值时,复数z=(m2-8m+15)+(m2+3m-28)i在复平面内的对应点:
(1)位于第四象限;
(2)位于x轴负半轴上;
(3)在上半平面(含实轴).
考点:复数的代数表示法及其几何意义
专题:计算题,数系的扩充和复数
分析:(1)要使点位于第四象限,须
m2-8m+15>0
m2+3m-28<0
,解出即可;
(2)要使点位于x轴负半轴上,须
m2-8m+15<0
m2+3m-28=0
,解出即可;
(3)要使点位于上半平面(含实轴),须m2+3m-28≥0,解出可得;
解答: 解:(1)要使点位于第四象限,须
m2-8m+15>0
m2+3m-28<0
,即
m<3或m>5
-7<m<4

解得-7<m<3,
∴-7<m<3.
(2)要使点位于x轴负半轴上,须
m2-8m+15<0
m2+3m-28=0

3<m<5
m=-7或m=4
,解得m=4,
∴m=4.
(3)要使点位于上半平面(含实轴),须m2+3m-28≥0,
解得m≥4或m≤-7.
点评:该题考查复数代数形式的表示及其几何意义,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的导数f′(x)=(x+2)(x-a),若f(x)在x=a处取得极大值,则函数f(x)的单调减区间为(  )
A、[a,-2]
B、[a,+∞)
C、(-∞,-2]
D、[-2,a]

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和为Sn,a1=1,an=
Sn
n
+n-1.
(1)求an
(2)若存在二次函数f(x)=ax2(a≠0),使数列{
f(n)
anan+1
}前n项和Tn=
2n2+2n
2n+1
,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角α,β满足sinβ=mcos(α+β)•sinα(m>0,α+β≠
π
2
),若x=tanα,y=tanβ,
(1)求y=f(x)的表达式;
(2)当α∈[
π
4
π
2
)时,求(1)中函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式ax2+7x+4>0的解集是{x|-
1
2
<x<4}.
(1)求关于x的不等式 ma•x2+(m+a)x+3+a>0(m≥0)的解集;
(2)若关于x的不等式 ma•x2+(m+a)x+3+a>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差大于零的等差数列,数列{bn}为等比数列,且a1=b1=2,a2-b2=1,a3+b3=16.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=abn,数列{cn}前n项的和为Sn,集合A={n∈N*|Sn>6•2n+n2-8n},求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线m:y=2x-16,抛物线C:y2=ax(a>0).
(1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U=R,集合M={x|4a-5<x<4a},N={x|-1<x<3},
(1)若a=
1
2
,求M∩N;
(2)若N⊆∁UM,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数a,b满足
1
a
+
4
b
=1,则3a+b的最小值为
 

查看答案和解析>>

同步练习册答案