精英家教网 > 高中数学 > 题目详情
13.求定积分${∫}_{0}^{\frac{π}{2}}$xsinxdx.

分析 利用分部积分法对不定积分∫xsinxdx进行积分,求出原函数,再求${∫}_{0}^{\frac{π}{2}}$xsinxdx.的值.

解答 解:∫xsinxdx=∫xd(-cosx)=-xcosx-∫-cosxdx=sinx-xcosx+C.
∴${∫}_{0}^{\frac{π}{2}}$xsinxdx=(sinx-xcosx)${丨}_{0}^{\frac{π}{2}}$=1.
∴${∫}_{0}^{\frac{π}{2}}$xsinxdx=1.

点评 本题考查了利用分部积分法求得定积分的值,找出原函数是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}满足a1+a14=a7+4,则lgS15=(  )
A.l+lg6B.6C.1+lg3D.lg6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若数据x1,x2,x3,…xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2;
③两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
④对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y有关”的把握越大.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{7}$B.$\sqrt{3}$C.$\sqrt{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太级图形展现了一种互相转化,相对统一的形式美、和谐美.现在定义:能够将圆O的周长和面积同时分为相等的两部分的函数称为圆O的“太极函数”,给出下列命题:
p1:对于任意一个圆O,其对应的“太极函数”不唯一;
p2:f(x)=ex+e-x可能是某个圆的一个“太极函数”;
p3:圆O:(x-1)2+y2=36的一个“太极函数”为f(x)=-ln$\frac{5+x}{7-x}$;
p4:“太极函数”的图象一定是中心对称图形.
其中正确的命题是(  )
A.p1,p2B.p1,p3C.p2,p3D.p3,p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各对函数互为反函数的是(  )
A.y=sinx,y=cosxB.y=ex,y=e-xC.y=3x,y=$\frac{x}{3}$D.y=tanx,y=-cotx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.求值:cos180°=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率是$\frac{1}{2}$,两次闭合都出现红灯的概率为$\frac{1}{6}$,则在第一次闭合后出现红灯的条件下第二次出现红灯的概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且ccosA+acosC=2c,若a=b,则sinB=(  )
A.$\frac{{\sqrt{15}}}{4}$B.$\frac{1}{4}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案