| A. | $\frac{{3\sqrt{2}}}{4}$ | B. | -$\frac{{\sqrt{2}}}{4}$ | C. | -$\frac{{3\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
分析 利用两角和的正切将tan(α+β)=4tanβ转化,整理为关于tanβ的一元二次方程,利用题意,结合韦达定理即可求得答案
解答 解:∵tan(α+β)-2tanβ=0,
∴tan(α+β)=2tanβ,
∴$\frac{tanα+tanβ}{1-tanαtanβ}$=2tanβ,
∴2tanαtan2β-tanβ+tanα=0,①
∴α,β∈($\frac{3π}{2}$,2π),
∴方程①有两负根,tanα<0,
∴△=1-8tan2α≥0,
∴tan2α≤$\frac{1}{8}$,
∴tanα≥-$\frac{\sqrt{2}}{4}$
∴tanα的最小值是-$\frac{\sqrt{2}}{4}$,
故选:B.
点评 本题考查两角和与差的正切函数,考查一元二次方程中韦达定理的应用,考查转化思想与方程思想,属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 做不到“光盘” | 能做到“光盘” | |
| 男 | 45 | 10 |
| 女 | 30 | 15 |
| P(K2≥k) | 0.10 | 0.05 | 0.01 |
| k | 2.706 | 3.841 | 6.635 |
| A. | 在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关” | |
| B. | 有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关” | |
| C. | 在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关” | |
| D. | 有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [1,+∞) | C. | $(0,\sqrt{5}]$ | D. | $[1,\sqrt{5}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com