精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=mx2-mx+1,对一切实数x,f(x)>0恒成立,则m的范围为(  )
A.[0,4]B.(0,4)C.(-∞,-4)∪(0,+∞)D.(-∞,-4)∪[0,+∞)

分析 当m≠0时,当m≠0时,f(x)>0恒成立,$\left\{\begin{array}{l}{m>0}\\{△={m}^{2}-4m<0}\end{array}\right.$,当m=0时,原不等式为1>0,显然对一切x恒成立.由此能够求出不等式对一切实数x恒成立的m的取值范围.

解答 解:①当m≠0时,f(x)>0恒成立,
$\left\{\begin{array}{l}{m>0}\\{△={m}^{2}-4m<0}\end{array}\right.$,
解得0<m<4.
②当m=0时,原不等式为1>0,显然对一切x恒成立.
综上可得,
当0≤m<4时,不等式对一切实数x恒成立.
故选:A.

点评 本题考查二次函数的取值范围,是基础题.解题时要认真审题,注意分类讨论思想的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知f(x)=asin(πx+α)+bcos(πx-β),其中a,b,α,β均为非零实数,若f(2010)=-1,则f(2011)等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)的定义域是{x|x≠0},对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.则下列结论正确的是(1),(3)
(1)f(1)=0;       
(2)若a>1,则f(a)-f(-a)>0;    
(3)f(x)在(0,+∞)上是增函数; 
(4)不等式f(x-1)<2的解集为(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sin2x+sinxcosx-$\frac{1}{2}$,下列结论中:
①函数f(x)关于x=$\frac{π}{8}$对称;
②函数f(x)关于(-$\frac{π}{8}$,0)对称;
③函数f(x)在(0,$\frac{π}{8}$)是增函数,
④将y=$\frac{{\sqrt{2}}}{2}$cos2x的图象向右平移$\frac{3π}{8}$可得到f(x)的图象.
其中正确的结论序号为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.α,β,γ为平面,l是直线,已知α∩β=l,则“α⊥γ,β⊥γ”是“l⊥γ”的(  )条件.
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{{x}^{2}}{ax-2}$(a,b∈N*),且f(b)=b及f(-b)<-$\frac{1}{b}$成立,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用0,1,2,3,4,5,6七个数共可以组成180个没有重复数字的三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lga-lgb的不同值的个数是18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列结论正确的是(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$
B.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为钝角”的充要条件是“$\overrightarrow{a}$•$\overrightarrow{b}$<0”
C.若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0
D.“若θ=$\frac{π}{3}$,则cosθ=$\frac{1}{2}$”的否命题为“若θ≠$\frac{π}{3}$,则cosθ$≠\frac{1}{2}$”

查看答案和解析>>

同步练习册答案