精英家教网 > 高中数学 > 题目详情
为监测幼儿身体发育状况,某幼儿园对“大班”的100名幼儿的体重做了测量,并根据所得数据画出了频率分布直方图,如图所示.则体重在[18,20](单位kg)的幼儿人数为(  )
A、10B、15C、30D、75
考点:频率分布直方图
专题:概率与统计
分析:由频率分布直方图可知体重在18-20千克的儿童的频率为第五个小矩形的面积,再乘以100即为所求.
解答: 解:由图可知组距为2,
∴18-20千克的儿童人数为100×2×0.075=15人.
故选:B.
点评:本题考查利用频率分布直方图求某个范围内的频数,属基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

向面积为S的△ABC内任投一点P,则随机事件“△PBC的面积小于
S
3
”的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若如图所示的程序框图输出的S是30,则在判断框中M表示的“条件”应该是(  )
A、n≥3B、n≥4
C、n≥5D、n≥6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=
1
2
,则下列结论中错误的是(  )
A、AC⊥BE
B、EF∥平面ABCD
C、三棱锥A-BEF的体积为定值
D、异面直线AE,BF所成角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x2≥4},N={x|x+1≥0},则(∁RM)∩N=(  )
A、{x|-1≤x<2}
B、{x|x<2}
C、{x|-1<x<2}
D、{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆M、抛物线N的焦点均在x轴上的,且M的中心和M的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求M,N的标准方程;
(Ⅱ)已知定点A(1,
1
2
),过原点O作直线l交椭圆M于B,C两点,求△ABC面积的最大值和此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),已知点(1,e)和(e,
3
2
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A、B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,若|AF1|-|BF2|=
6
2
,求直线AF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)上横坐标为1的点M到抛物线C焦点F的距离|MF|=2.
(1)试求抛物线C的标准方程;
(2)若直线l与抛物线C相交所得的弦的中点为(2,1),试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
x
-
1
x

(Ⅰ)当x≥1时,求f(x)-g(x)的最大值;
(Ⅱ)求证:
x
x-1
lnx
x+1
2
,?x>1恒成立;
(Ⅲ)求证:
n2
2
+
3n
8
n
k=1
1
ln
2k+1
2k-1
n2
2
+
n
2
(n≥2,n∈N).(参考数据:ln3≈1.1,ln5≈1.6)

查看答案和解析>>

同步练习册答案