精英家教网 > 高中数学 > 题目详情

(几何证明选讲)如图,割线经过圆心O,绕点逆时针旋120°到,连交圆于点,则        。

解析试题分析:先由余弦定理求出PD,再根据割线定理即可求出PE,问题解决.解:由余弦定理得,PD2=OD2+OP2-2OD•OPcos120°=1+4-2×1×2×(-)=7,所以PD=,根据割线定理PE•PD=PB•PC得, PE=1×3,所以PE=,故答案为
考点:余弦定理
点评:已知三角形两边与夹角时,一定要想到余弦定理的运用,之后做题的思路也许会豁然开朗.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

如图所示,平行四边形ABCD中,AE∶EB=1∶2,若△AEF的面积等于1 cm2,则△CDF的面积等于________cm2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,AB和AC分别是圆O的切线,且OC=3,AB=4, 延长AO与圆O交于D点,则△ABD的面积是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(几何证明选讲选做题) 如图圆的直径,的延长线上一点,过点 作圆的切线,切点为,连接,若,则       .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,⊙上一点在直径上的射影为,且,则⊙的半径等于______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,直径AB=2,C是圆O上的一点,连接BC并延长至D, 使|CD|=|BC|,若ACOD的交点P,则       

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如下图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为____________cm2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(几何证明选讲选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图7:A点是半圆上一个三等分点,B点是的中点,P是直径MN上一动点,圆的半径为1,则PA+PB的最小值为           

查看答案和解析>>

同步练习册答案