| A. | 不存在 | B. | 恰有一条 | C. | 恰有两条 | D. | 有无数条 |
分析 由直线L和T无公共点,可知平移直线后直线与曲线F相切,即可得到结论.
解答 解:由曲线T:x=$\frac{1}{y}$+y,得$y=\frac{x-\sqrt{{x}^{2}-4}}{2}$或$y=\frac{x+\sqrt{{x}^{2}-4}}{2}$.
∵直线L:y=ax+b与曲线T:x=$\frac{1}{y}$+y没有公共点,
∴直线y=ax+b与双曲线的渐近线平行,
∴平移后直线y=ax+b与曲线F相切,
各有一条切线,![]()
∴平行L的直线与曲线T有且只有一个公共点的直线有2条,
故选:C
点评 本题主要考查直线和圆锥曲线的位置关系的判断,利用条件转化切线问题是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 360 | B. | 720 | C. | 240 | D. | 1440 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com