【题目】年月日是第二十七届“世界水日”,月日是第三十二届“中国水周”.我国纪念年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取、两个小区各户家庭,记录他们月份的用水量(单位:)如下表:
小区家庭月用水量 | ||||||||||
小区家庭月用水量 | ||||||||||
(1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?
(2)从用水量不少于的家庭中,、两个小区各随机抽取一户,求小区家庭的用水量低于小区的概率.
【答案】(1)见解析(2)
【解析】
(1)根据表格中的数据绘制出茎叶图,并结合茎叶图中数据的分布可比较出两个小区居民节水意识;
(2)列举出所有的基本事件,确定所有的基本事件数,然后确定事件“小区家庭的用水量低于小区”所包含的基本事件数,利用古典概型的概率公式可计算出事件“小区家庭的用水量低于小区”的概率.
(1)绘制如下茎叶图:
由以上茎叶图可以看出,小区月用水量有的叶集中在茎、上,而小区月用水量有的叶集中在茎、上,由此可看出小区居民节水意识更好;
(2)从用水量不少于的家庭中,、两个小区各随机抽取一户的结果:
、、、、、、、,共个基本事件,
小区家庭的用水量低于小区的的结果:、、,共个基本事件.
所以,小区家庭的用水量低于小区的概率是.
科目:高中数学 来源: 题型:
【题目】已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(an)…是首项为4,公差为2的等差数列.
(I)设a为常数,求证:{an}成等比数列;
(II)设bn=anf(an),数列{bn}前n项和是Sn , 当时,求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)是定义在 R上的偶函数,当 x≥0 时,f(x)=x2+ax+b 的部分图象如图所示:
(1)求 f(x)的解析式;
(2)在网格上将 f(x)的图象补充完整,并根据 f(x)图象写出不等式 f(x)≥1的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,数列满足.
(1)求数列、的通项公式;
(2),求数列的前项和;
(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.
(1)若a=-1,t=5求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com