精英家教网 > 高中数学 > 题目详情
14.何体的三视图如图所示,则该几何体的表面积是(  )
A.8+2$\sqrt{2}$B.8+4$\sqrt{2}$C.12+2$\sqrt{2}$D.12+4$\sqrt{2}$

分析 判断直观图的形状,利用三视图的数据,求解几何体的表面积.

解答 解:由题意可知几何体是三棱柱,如图:三棱柱的底面的等腰三角形,底边为2$\sqrt{2}$,高为$\sqrt{2}$,棱柱的高为2.
几何体的表面积为:2×$\frac{1}{2}×2\sqrt{2}×\sqrt{2}$+(2$\sqrt{2}$+2×2)×2=12+4$\sqrt{2}$.
故选:D.

点评 本题考查三视图与直观图的关系,几何体的表面积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{m}$=(2cosx,sinx),$\overrightarrow{n}$=(cosx,2$\sqrt{3}$cosx)(x∈R),设函数f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$-1.
(1)求函数f(x);
(2)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B=$\frac{π}{4}$,边AB=3,求边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为4的棱形,∠ABC=60°,AC与BD交于点O,M、N分别是OC、PD的中点,异面直线BD与AN所成角的余弦值为$\frac{{2\sqrt{3}}}{5}$. 
(Ⅰ)求PA的长;
(Ⅱ)求二面角A-PM-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆$\frac{{x}^{2}}{m+25}$+$\frac{{y}^{2}}{m}$=1上存在一点P,它与两焦点连线互相垂直,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解方程:3x2+15x-2+2$\sqrt{{x}^{2}+5x+1}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为 Sn,a1+a3=$\frac{3}{2}$,S5=5.
(Ⅰ)求数列{an }的通项公式;
(Ⅱ)已知数列{bn }满足 anbn=$\frac{1}{4}$,求数列{bnbn+1} 的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.cos72°-cos36°=(  )
A.3-2$\sqrt{3}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱∠DOT=2∠DMB中,已知∠BMC=30°.,AB=BC=1,BB1=2,$∠BC{C_1}=\frac{π}{3}$.
(1)求证:C1B⊥平面ABC;
(2)设$\overrightarrow{CE}=λ\overrightarrow{C{C_1}}$(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,则复数$\frac{(1-i)^{2}}{1+i}$的共轭复数为(  )
A.1+iB.1-iC.1-2iD.-1+i

查看答案和解析>>

同步练习册答案