分析 (Ⅰ)通过a1+a3=$\frac{3}{2}$、S5=5,利用等差中项的性质可得a2=$\frac{3}{4}$、a3=1,进而可得结论;
(Ⅱ)通过anbn=$\frac{1}{4}$、an=$\frac{n+1}{4}$,可得bn=$\frac{1}{n+1}$,利用裂项法可得bnbn+1=$\frac{1}{n+1}$-$\frac{1}{n+2}$,通过并项相加即可.
解答 解:(Ⅰ)设数列{an}的公差为d,
∵a1+a3=$\frac{3}{2}$,
∴2a2=a1+a3=$\frac{3}{2}$,即a2=$\frac{3}{4}$,
再又等差中项的性质可得S5=5a3=5,即a3=1,
∴d=a3-a2=1-$\frac{3}{4}$=$\frac{1}{4}$,a1=$\frac{3}{4}$-$\frac{1}{4}$=$\frac{1}{2}$,
∴an=$\frac{1}{2}$+$\frac{1}{4}$(n-1)=$\frac{n+1}{4}$;
(Ⅱ)∵anbn=$\frac{1}{4}$,an=$\frac{n+1}{4}$,
∴bn=$\frac{1}{n+1}$,∴bnbn+1=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴b1b2+b2b3+…+bnbn+1=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$.
点评 本题考查求数列的通项,利用等差中项的性质及裂项相消法是解决本题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8+2$\sqrt{2}$ | B. | 8+4$\sqrt{2}$ | C. | 12+2$\sqrt{2}$ | D. | 12+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 偶函数且它的图象关于点(π,0)对称 | |
| B. | 偶函数且它的图象关于点$({\frac{3π}{2},0})$对称 | |
| C. | 奇函数且它的图象关于点$({\frac{3π}{2},0})$对称 | |
| D. | 奇函数且它的图象关于点(π,0)对称 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com