精英家教网 > 高中数学 > 题目详情
11.若函数f(x)在其定义域的一个子集[a,b]上存在实数 (a<m<b),使f(x)在m处的导数f′(m)满足f(b)-f(a)=f′(m)(b-a),则称m是函数f(x)在[a,b]上的一个“中值点”,函数f(x)=$\frac{1}{3}$x3-x2在[0,b]上恰有两个“中值点”,则实数b的取值范围是($\frac{3}{2}$,3).

分析 根据新定义得到x1,x2为方程x2-2x-$\frac{1}{3}$b2+b=0在(0,b)上有两个不同根,构造函数g(x)=x2-2x-$\frac{1}{3}$b2+b,列出不等式组,解得即可

解答 解:f′(x)=x2-2x,
设 $\frac{f(b)-f(0)}{b-0}$=$\frac{1}{3}$b2-b,
由已知可得x1,x2为方程x2-2x-$\frac{1}{3}$b2+b=0在(0,b)上有两个不同根,
令g(x)=x2-2x-$\frac{1}{3}$b2+b,
则 $\left\{\begin{array}{l}{g(0)=-{\frac{1}{3}b}^{2}+b>0}\\{g(b)={\frac{2}{3}b}^{2}-b>0}\\{△=4+{\frac{4}{3}b}^{2}-4b>0}\end{array}\right.$,
解得:$\frac{3}{2}$<b<3,
故答案为:$(\frac{3}{2},3)$.

点评 本题主要是在新定义下考查二次方程根的问题.在做关于新定义的题目时,一定要先认真的研究定义理解定义,再按定义做题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.有一段演绎推理:若直线平行于平面,则这条直线平行于平面内所有直线;≠已知直线b∥平面α,直线a?平面α;则直线b∥直线a”下列叙述正确的是(  )
A.该命题是真命题
B.该命题是假命题,因为大前提是错误的
C.该命题是假命题,因为小前提是错误的
D.该命题是假命题,因为结论是错误的

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知角α的终边经过点P($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则cosα的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.样本数据-2,0,6,3,6的众数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在四棱锥P-ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求三棱锥B-EFC的体积;
(3)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在△ABC中,点M是BC的中点,点N在AC上,且AN=3NC,AM与BN相交于点P,设$\overrightarrow{CA}$=$\overrightarrow a$,$\overrightarrow{CB}$=$\overrightarrow b$,用$\overrightarrow a$、$\overrightarrow b$表示$\overrightarrow{CP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)的图象如图所示,则导函数y=f'(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.y=tan(πx+$\frac{π}{4}$)的对称中心为(  )
A.($\frac{(2k-1)π}{4}$,0),k∈ZB.$(\frac{2k-1}{2},0),k∈Z$C.($\frac{2k-1}{4}$,0),k∈ZD.($\frac{(2k-1)π}{2}$,0),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线y=3x-1的斜率为3.

查看答案和解析>>

同步练习册答案