精英家教网 > 高中数学 > 题目详情
16.一位数学老师希望找到一个函数y=f(x),其导函数f′(x)=lnx,请您帮助他找一个这样的函数f(x)=xlnx-x+c,c是常数.(写出表达式即可,不需写定义域)

分析 根据导数的关系进行求解即可.

解答 解:当f(x)=xlnx-x+c时,f′(x)=lnx,
故答案为:f(x)=xlnx-x+c,c是常数

点评 本题主要考查函数的导数的计算,是开放性题目,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆线$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,如图所示,A(a,0),B(0,-b)原点到直线AB的距离为$\frac{4}{\sqrt{5}}$.
(1)求椭圆的标准方程;
(2)若直线l:y=kx+1(k≠0)交椭圆于不同的两点E,F,且E,F都在以B为圆心的圆周上,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,AE,DF是圆柱的两条母线,过AD作圆柱的截面交下底面于BC,且AD=BC,圆柱的高为2,底面半径为$\sqrt{3}$
(Ⅰ)求证:平面AEB∥平面DFC
(Ⅱ)求证:BC⊥AB
(Ⅲ)求四棱锥E-ABCD体积最大时AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数F(x)=($\frac{lnx}{x}$)2+(a-1)$\frac{lnx}{x}$+1-a有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)的值为(  )
A.1-aB.a-1C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式x2+ax+1≥0对于一切x∈(0,$\frac{1}{2}$)恒成立,则a的取值范围是(  )
A.a≥0B.a≥-2C.a≥-$\frac{5}{2}$D.a≥-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆心在曲线y=$\frac{1}{x}$(x>0)上,与直线2x+y+1=0相切且面积最小的圆的方程为(  )
A.(x-1)2+(y-2)2=5B.(x-1)2+(y-1)2=5C.(x-1)2+(y-2)2=25D.(x-1)2+(y-1)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A={x|-x2+3x-2>0},B={x|x2-(a+1)x-a≤0}.
(1)化简集合B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=e2+x-2的零点所在的区间是(  )
A.(-2,-1)B.(-1,0)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点F是抛物线C:y2=2px(p>0)的焦点,点P(2,y0)在抛物线C上,且|PF|=3.
(1)求抛物线C的方程及其准线方程;
(2)若过点F的直线l与抛物线C相交于A,B两个不同点,求|AB|的最小值.

查看答案和解析>>

同步练习册答案