精英家教网 > 高中数学 > 题目详情
19. 如图,AB为圆O的直径,直线CD与圆O相切于M,AD垂直CD于D,BC⊥CD于C,MN⊥AB于N,又AD=3,BC=1,则MN=$\sqrt{3}$.

分析 连接AM,OM,BM,证明△CMB≌△NMB,可得CM=NM,再求出CD,即可求出MN.

解答 解:连接AM,OM,BM,则
因为直线CD与圆O相切于M,
所以∠CMB=∠MAM,
因为AB为圆O的直径,MN⊥AB,
所以∠NMB=∠MAM,
所以∠CMB=∠NMB,
因为BC⊥CD于C,MN⊥AB,
所以△CMB≌△NMB,
所以CM=NM,
因为直线CD与圆O相切于M,AD垂直CD于D,BC⊥CD于C,AD=3,BC=1,
所以OM=2,
所以AB=4,
所以CD=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
所以CM=$\sqrt{3}$
所以MN=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查三角形全等的证明,考查圆的切线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,AB、AC是⊙O的两条切线,切点分别为B、C.若∠BAC=60°,BC=6,则⊙O的半径为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知三棱柱ABC-A1B1C1中,AB=BC=BB1,AB⊥BC,BB1⊥平面ABC,D为AC的中点,E为CC1的中点.
(1)求证AC1∥平面BDE;
(2)求证:AC1⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a+b)(sinA-sinB)=(b+c)sinC,则A=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=$\frac{2l}{1+i}$(i是虚数单位)是(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将边长为2的等边△ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:
①f(x)的值域为[0,2];
②f(x)是周期函数且周期为6;
③f(x)<f(4)<f(2015);
④滚动后,当顶点A第一次落在x轴上时,的图象与x轴所围成的面积为$\frac{8π}{3}$+$\sqrt{3}$.
其中正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.以平面直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系取相同的长度单位.已知圆C的参数方程是$\left\{\begin{array}{l}{x=2cosφ}\\{y=1+2sinφ}\end{array}\right.$(φ为参数),直线l的极坐标方程是2ρcosδ+ρsinδ=6.
(Ⅰ)写出圆C的极坐标方程;
(Ⅱ)过圆C上任意一点P作与l夹角为45°的直线,交l于点Q,求|PQ|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列三个数:a=ln$\frac{3}{2}$-$\frac{3}{2}$,b=lnπ-π,c=ln3-3,大小顺序正确的是(  )
A.a>c>bB.a>b>cC.a<c<bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一空间几何体的三视图如图所示,则该几何体的体积为16+8π.

查看答案和解析>>

同步练习册答案