精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos2x+2
3
sinxcosx.
(1)求函数f(x)的单调递增区间;
(2)求函数f(x)在[-
π
6
π
3
]上的值域.
考点:三角函数中的恒等变换应用,两角和与差的正弦函数
专题:三角函数的图像与性质
分析:(1)直接借助于降幂公式和二倍角公式进行化简,然后结合辅助角公式进行求解即可;
(2)利用三角函数的单调性进行求解.
解答: 解:(1)f(x)=2cos2x+2
3
sinxcosx.
=1+cos2x+
3
sin2x
=2sin(2x+
π
6
)+1,
∵-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ,
∴-
π
3
+kπ≤x≤
π
6
+kπ,
∴函数f(x的单调递增区间为[-
π
3
+kπ,
π
6
+kπ],k∈Z

(2)∵x∈[-
π
6
π
3
],
∴-
π
6
≤2x+
π
6
6

∴当2x+
π
6
=-
π
6
时f(x)的最小值为0;
2x+
π
6
=
π
2
时f(x)的最大值为3;
∴f(x)在区间[-
π
6
π
3
上的值域为[0,3].
点评:本题重点考查了降幂公式和二倍角公式,辅助角公式,三角函数的单调性等,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知扇形的周长为12cm,面积为8cm2,则扇形圆心角的弧度数为(  )
A、1B、4C、1或4D、2或4

查看答案和解析>>

科目:高中数学 来源: 题型:

当α∈R时,下列各式恒成立的是(  )
A、sin(3π-α)=-sinα
B、sin(
2
+α)=-cosα
C、cos(14π-α)=cosα
D、cos(11π+α)=cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题错误的是(  )
A、命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B、“x>2”是“x2-3x+2>0”的充分不必要条件
C、对于命题p:?x∈R,使得x2+x+1<0,则¬p为:?x∈R,均有x2+x+1≥0
D、若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C对应的边分别是a,b,c.已知2asinB=
3
b

(1)求角A的大小;
(2)若△ABC的面积S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
2
sinx+cosx,x∈[0,π]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过P(1,2),求下列的值;
(1)
3sinα+2cosα
sinα-cosα

(2)
cos(π-α)cos(
π
2
+α)sin(α-
2
)
sin(3π+α)sin(α-π)cos(π+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,已知S8=68,a1a8=-38且a1<a8
(Ⅰ)求{an}的通项公式;
(Ⅱ)调整数列{an}的前三项a1、a2、a3的顺序,使它成为等比数列{bn}的前三项,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
x2-bx+1(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若b=0,h(x)=f(x)-g(x),?x1、x2[1,2]使得h(x1)-h(x2)≥M成立,求满足上述条件的最大整数M;
(3)当b≥2时,若对于区间[1,2]内的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的取值范围.

查看答案和解析>>

同步练习册答案