精英家教网 > 高中数学 > 题目详情
设数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn=2n-1(n∈N*),
(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn=1,2,3,…,求数列{cn}的前n项和Tn
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(1)由已知条件根据等差数列的通项公式列出方程组,求出首项和公差,由此能求出{an}的通项公式;由Sn=2n-1,得到Sn-1=2n-1-1(n≥2),两式相减推导出{bn}是等比数列,由此能求出{bn}的通项公式.
(2)cn=an•bn是一个等差数列与一个等比数列的乘积,所以利用错位相减的方法求出和.
解答: 解:(1)∵数列{an}是等差数列,设公差为d,
∵a5=14,a7=20,
∴a1+4d=14,a1+6d=20,
解得a1=2,d=3,
∴an=a1+(n-1)d=3n-1.
∵Sn=2n-1①,
∴Sn-1=2n-1-1(n≥2)②,
由①-②得bn=2n(n≥2),
n=1时也成立,∴bn=2n
(2)cn=an•bn=(3n-1)•2n
∴Tn=2•2+5•22…+(3n-1)•2n
2Tn=2•22…+(3n-4)•2n+(3n-1)•2n+1
两式相减得Tn=(3n-4)•2n+1+8.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,单位正方形OABC在二阶矩阵T的作用下,变成菱形OA1B1C1
(1)求矩阵T;
(2)设双曲线F:x2-y2=1在矩阵T对应的变换作用下得到曲线F′,求曲线F′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1+2a2+…+2n-1an=8n对任意的n∈N*都成立,设向量
a
=(x,2),
b
=(x+n,2x-1)(n∈N*).函数f(x)=
a
b
在[0,1]上的最小值与最大值的和为bn
(1)求数列{an},{bn}的通项公式.
(2)设cn=an•bn,试求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx2+c,其中a+b=0,a,b,c均为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y-1=0.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1+2an•an+1-an=0,求数列{an}的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是圆O外的一点,PA为切线,A为切点,割线PBC经过圆心O,PC=6,PA=2
3
,则∠PCA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=
2

(1)求证:平面A1BC⊥平面ACC1A1
(2)若D为AB中点,求证:BC1∥平面A1CD;
(3)若D为AB得三等分点,且
AD
DB
=2,求平面A1CD将三棱柱分成左,右两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点.
(Ⅰ)求证:A1C∥平面BDE;
(Ⅱ)求证:平面A1AC⊥平面BDE;
(Ⅲ)求直线BE与平面A1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,a1=1,如果a2•a3<a5,那么d的取值范围是
 

查看答案和解析>>

同步练习册答案