精英家教网 > 高中数学 > 题目详情

已知函数
(1)当,且时,求的值;
(2)是否存在实数,使得函数的定义域、值域都是,若存在,则求出的值,若不存在,请说明理由.


解:(1)∵在(0,1)上为减函数,在上是增函数.
由0<a<b,且f(a)=f(b),可得 0<a1<b且
所以.          
(2)不存在满足条件的实数a,b.若存在满足条件的实数a,b, 则0<a<b
1、 当时,在(0,1)上为减函数.
    即 解得  a=b.              
故此时不存在适合条件的实数a,b.                       
2、当时,上是增函数.
    即 
此时a,b是方程的根,此方程无实根.     
故此时不存在适合条件的实数a,b.
3、当时,由于,而
故此时不存在适合条件的实数a,b.                         
综上可知,不存在适合条件的实数a,b.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线方程为
(Ⅰ)求的值;
(Ⅱ)证明:当,且时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数
(1)用定义证明:函数是R上的增函数;(6分)
(2)证明:对任意的实数t,都有;(4分)
(3)求值:。(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数且存在使
(I)证明:是R上的单调增函数;
(II)设其中 
证明:
(III)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域
(2)求函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)判断函数y=在区间[2,6]上的单调性,并求最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 已知函数的图象与函数的图象关于点A
(0,1)对称.(1)求函数的解析式(2)若=+,且在区间(0,
上的值不小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
对于每个实数,设三个函数中的最小值,用分段函数写出的解析式,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且同时满足下列条件:
(1)是奇函数;
(2)在定义域上单调递减;
(3)的取值范围。

查看答案和解析>>

同步练习册答案