精英家教网 > 高中数学 > 题目详情
11.长方体ABCD-A1B1C1D1中,AB=2,AA1=1,若二面角A1-BD-A的大小为$\frac{π}{6}$,则BD1与面A1BD所成角的正弦值为$\frac{\sqrt{51}}{34}$.

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出BD1与面A1BD所成角的正弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设AD=t,则D(0,0,0),A1(t,0,1),B(t,2,0),D1(0,0,1),
$\overrightarrow{D{A}_{1}}$=(t,0,1),$\overrightarrow{DB}$=(t,2,0),
设平面DA1B的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=tx+z=0}\\{\overrightarrow{n}•\overrightarrow{DB}=tx+2y=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,-t,-2t),
又平面ABD的法向量$\overrightarrow{m}$=(0,0,1),二面角A1-BD-A的大小为$\frac{π}{6}$,
∴|cos<$\overrightarrow{n},\overrightarrow{m}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2t}{1×\sqrt{4+5{t}^{2}}}$=cos$\frac{π}{6}$,解得t=2$\sqrt{3}$,或t=-2$\sqrt{3}$(舍),
∴B(2$\sqrt{3}$,2,0),$\overrightarrow{B{D}_{1}}$=(-2$\sqrt{3}$,-2,1),$\overrightarrow{n}$=(2,-2$\sqrt{3}$,-4$\sqrt{3}$),
设BD1与面A1BD所成角为θ,
sinθ=$\frac{|\overrightarrow{B{D}_{1}}•\overrightarrow{n}|}{|\overrightarrow{B{D}_{1}}|•|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{\sqrt{17}•\sqrt{64}}$=$\frac{\sqrt{51}}{34}$.
∴BD1与面A1BD所成角的正弦值为$\frac{\sqrt{51}}{34}$.
故答案为:$\frac{\sqrt{51}}{34}$.

点评 本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.求值:$\frac{tan49°+tan11°}{1-tan49°tan11°}$=(  )
A.tan 38°B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l:y=(a+1)x-1与曲线C:y2=ax恰好有一个公共点,则实数a的值构成的集合为(  )
A.{-1,0}B.{-2,-$\frac{4}{5}$}C.{-1,-$\frac{4}{5}$}D.{-1,-$\frac{4}{5}$,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:$lg4+2lg5+{(0.25)^{-\frac{1}{2}}}-{8^{\frac{2}{3}}}$;
(2)已知f(x)在R上是奇函数,且f(x+2)=-f(x),当x∈(0,2)时,f(x)=2x2,求f(2015).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=$\left\{\begin{array}{l}{x,x≤1}\\{(\frac{1}{2})^{x-1},x>1}\end{array}\right.$,则不等式f(x2-3)>f($\frac{1}{2}$x)的解集为(-∞,-$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\left\{\begin{array}{l}{ax+b,x<-1}\\{ln(x+c),x≥-1}\end{array}\right.$的图象如图所示,则a+b+c等于(  )
A.6B.7C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在复平面中,满足等式|z+i|=|4-3i|的复数z所对应点的轨迹是(  )
A.一条直线B.两条直线C.D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.四面体ABCD的四个顶点都在球O的球面上,AB=4,BC=CD=2,∠BCD=120°,AB⊥平面BCD,则球O的表面积为32π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\sqrt{si{n}^{2}120°}$等于(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案