精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.己知直线l的参数方程为
x=t
y=at
(t为參数),曲线C1的方程为ρ=4sinθ.若线段OQ的中点P始终在C1上.
(Ⅰ)求动点Q的轨迹C2的极坐标方程:
(Ⅱ)直线l与曲线C2交于A,B两点,若丨AB丨≥4
2
,求实数a的取值范围.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(1)设点Q(ρ1,θ),则ρ1=2ρ=8sinθ,即可得出;
(2)由题意,A,B两点中必有一个是极点,不妨设A为极点,则B(ρ,θ),可得ρ≥4
2
,可得sinθ≥
2
2
,|tanθ|≥1,解出即可.
解答: 解:(1)设点Q(ρ1,θ),则ρ1=2ρ=8sinθ,
故点Q的轨迹C2的极坐标方程为ρ=8sinθ;
(2)由题意,A,B两点中必有一个是极点,不妨设A为极点,则B(ρ,θ),由题,ρ≥4
2

8sinθ≥4
2
,∴sinθ≥
2
2

∴|tanθ|≥1,
则a=tanθ∈(-∞,-1]∪[1,+∞).
点评:本题考查了极坐标方程、中点坐标公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线C的离心率为2,△AOB的面积为
3
,则△AOB的内切圆半径为(  )
A、
3
-1
B、
3
+1
C、2
3
-3
D、2
3
+3

查看答案和解析>>

科目:高中数学 来源: 题型:

设U=R,集合A={x|x>0},B={x∈Z|x2-4≤0},则下列结论正确的是(  )
A、(∁UA)∩B={-2,-1,0}
B、(∁UA)∪B=(-∞,0]
C、(∁UA)∩B={1,2}
D、A∪B=(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asin(2x+
π
3
)+1(a>0)的定义域为R,若当-
12
≤x≤-
π
12
时,f(x)的最大值为2.
(1)求a的值;
(2)求图象的对称轴方程与对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=ex+1在点(0,2)处的切线与直线y=0和x=0围成的三角形面积为(  )
A、
1
2
B、
2
3
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

将下面用分析法证明
a2+b2
2
≥ab的步骤补充完整;要证
a2+b2
2
≥ab,只需证a2+b2≥2ab,也就是证
 
,即证
 
,由于
 
显然成立,因此原不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b分别是△ABC的内角A,B所对的边.若B=45°,b=
2
a
,则C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
2
2
,求
1
sin2α
+
1
cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过y=x2上一点(a,a2)作切线,问a为何值时所作切线与抛物线y=-x2+4x-1所围区域的面积最小(  )
A、2B、1C、1.5D、2.5

查看答案和解析>>

同步练习册答案