精英家教网 > 高中数学 > 题目详情
如图,在空间四边形ABCD中,E,F分别是AB和CB上的点,G,F分别是
CD和AD上的点,且
AE
EB
+
CF
FB
=1,
AH
HD
=
CG
GD
=2,求证:EH,BD,FG三条直线相交于同一点.
考点:平面的基本性质及推论
专题:证明题,空间位置关系与距离
分析:先证P为两个平面的公共点,利用两个平面的公共点在两个平面的公共直线上,证线共点.
解答: 解:连接EF,GH,
因为
AE
EB
=
CF
FB
=1,
AH
HD
=
CG
GD
=2,
所以EF∥AC,HG∥AC且EF≠AC   …(2分)
所以EH,FG共面,且EH与FG不平行,…(3分)
不妨设EH∩FG=P                …(4分)
则P∈EH,EH?面ABD,
所以P∈面ABD;…(6分)
同理P∈面BCD…(8分)
又因为平面ABD∩平面BCD=BD,所以P∈BD,…(10分)
所以EH,BD,FG三条直线相交于同一点P.…(12分)
点评:本题考查了用公理2证明点共线问题,考查平行关系的转化,考查了学生的空间想象能力和推理论证能力,本题较好的体现了线线、线面平行关系的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=2x+sinx的单调增区间是(  )
A、(-∞,+∞)
B、(0,+∞)
C、(2kπ-
π
2
,2kπ+
π
2
),k∈Z
D、以上答案均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是
7
9

(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x-2,数列{an}的前n项和为Sn,且点(an,2Sn)在函数y=f(x)的图象上;
(1)求数列{an}的通项公式;
(2)设bn=f(an),数列{bn}的前n项和为Tn,若 
T2n+4n
Tn+2n
<an+1+t对任意的n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种灯泡使用寿命在1000小时以上的概率为0.2,某同学家一共用了这种灯泡4只.设这4只灯泡在使用1000小时后,坏了的灯泡数为随机变量X.
(1)求随机变量X的概率分布;    
(2)求随机变量X的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,d为常数,已知对?n,m∈N*,当n>m,总有Sn-Sm=Sn-m+m(n-m)d成立
(1)求证:数列{an}是等差数列;
(2)若正整数n,m,k成等差数列,比较Sn+Sk与2Sm的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N*,当n>m时,总有Sn-Sm=Sn-m+m(n-m)d”是命题q:“数列{an}是等差数列”的充要条件吗?请证明你的结论;由此类比,请你写出数列{bn}是等比数列(公比为q,且q≠0)的充要条件(无需证明)?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-(a+2)x+lnx(a>0).
(1)若a=1,求函数f(x)的极值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z1=a+2i(a∈R),z2=3-4i,且
z1
z2
为纯虚数,求|z1|.

查看答案和解析>>

同步练习册答案