精英家教网 > 高中数学 > 题目详情
17.已知F1,F2是双曲线的两个焦点,Q是双曲线上除顶点外的任意一点.从某一焦点引∠F1QF2的平分线的垂线,垂足为P.则P的轨迹为(  )
A.抛物线B.椭圆C.D.双曲线

分析 利用已知条件判断出△MQF1为等腰三角形,利用双曲线的定义及等量代换得到MF2=2a,利用三角形的中位线得到OP=a,利用圆的定义判断出点的轨迹.

解答 解:设O为F1F2的中点
延长F1P交QF2于M,连接OP
据题意知△MQF1为等腰三角形
所以QF1=QM
∵|QF1-QF2|=2a
∴|QM-QF2|=2a
即MF2=2a
∵OP为△F1F2M的中位线
∴OP=a
故点P的轨迹为以O为圆心,以a为半径的圆.
故选:C

点评 本题考查双曲线的定义、原点定义及等量代换的数学方法、三角形的中位线性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知A船在灯塔C北偏东80°处,距离灯塔C为2km,B船在灯塔C北偏西40°,A、B两船的距离为3km,则∠ABC的余弦值$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+y2-2x-8=0,直线l:x+ay-3a=0.
(1)当直线l与圆C相切时,求实数a的值;
(2)当直线l与圆C相交于A、B两点,且AB=4$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为迎接2013年全运会的到来,组委会在大连市招募了100名志愿者,其中男、女志愿者各50名,调查是否喜欢运动得到如下统计数据.由于一些原因,丢失了其中四个数据,目前知道这四个数据c,a,b,d恰好成递增的等差数列.
喜欢运动不喜欢运动总计
ab50
cd50
总计3070100
(Ⅰ)将联表中数据补充完整,并判断是否有95%的把握认为性别与运动有关?
(Ⅱ) 调查中显示喜欢运动的男志愿者中有10%懂得医疗救护,而喜欢运动的女志愿者中有40%懂得医疗救护,从中抽取2人组成医疗救护小组,则这个医疗救护小组恰好是一男一女的概率有多大?
附:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥k)0.050.001
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F分别是AB,PD的中点.
(1)求证:AF∥平面PEC;
(2)求PC与平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.命题p:$\frac{x^2}{m+4}+\frac{y^2}{m-2}$=1表示双曲线方程,命题q:函数f(m)=$\frac{1}{{\sqrt{-m-2}}}$有意义.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列关于算法的说法中,正确的是(  )
A.算法是某个问题的解决过程B.算法执行后可以不产生确定的结果
C.解决某类问题的算法不是唯一的D.算法可以无限的操作下去不停止

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数g(x)=$\sqrt{2{x^2}-3x+1}$,则函数g(x)的定义域为(  )
A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,1]C.(-∞,$\frac{1}{2}$]∪[1,+∞)D.(-∞,-1]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义运算(a,b)?(c,d)=ac-bd,则符合条件(z,1-2i)?(-1,1+i)=0的复数z的所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案