精英家教网 > 高中数学 > 题目详情
7.已知A船在灯塔C北偏东80°处,距离灯塔C为2km,B船在灯塔C北偏西40°,A、B两船的距离为3km,则∠ABC的余弦值$\frac{{\sqrt{6}}}{3}$.

分析 先确定|AC|、|AB|和∠ACB的值,然后在△ABC中应用直线定理可求得sin∠ABC=$\frac{\sqrt{3}}{3}$,即可求出∠ABC的余弦值.

解答 解:由题意可知|AC|=2,|AB|=3,∠ACB=120°
在△ABC中由正弦定理可得$\frac{2}{sin∠ABC}=\frac{3}{sin120°}$,
∴sin∠ABC=$\frac{\sqrt{3}}{3}$,
∴cos∠ABC=$\frac{\sqrt{6}}{3}$.
故答案为:$\frac{{\sqrt{6}}}{3}$.

点评 本题主要考查正弦定理的应用,考查根据解三角形的有关定理来解决实际问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-2x.
(1)求函数f(x)的极值;
(2)证明:当x>0时,曲线y=x2恒在曲线y=ex的下方;
(3)讨论函数g(x)=x2-aex(a∈R)零点的个数.
参考公式:alogaN=N(a>0,a≠1,N>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若幂函数f(x)=xm+1在区间(0,+∞)是单调减函数,则实数m的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)≥$\frac{1}{2}$,则f(x)<$\frac{x}{2}$+$\frac{1}{2}$的解集为(  )
A.{x|x<1}B.{x|x>1}C.{x|x<-1}D.{x|x>-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求直线x-y+2=0被圆(x-2)2+(y-2)2=4截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式中,最小的是(  )
A.2cos240°-1B.2sin6°cos6°
C.sin50°cos37°-sin40°cos53°D.$\frac{\sqrt{3}}{2}$sin41°-$\frac{1}{2}$cos41°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.随机询问某校40名不同性别的学生在购买食物时是否读营养说明,得到如下2×2列联表:
读营养说明不读营养说明合计
16
20
合计16
(1)补全列联表
(2)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为“性别与是否读营养说明之间有关系”?
附:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
P(K2≥k)0.100.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2是双曲线的两个焦点,Q是双曲线上除顶点外的任意一点.从某一焦点引∠F1QF2的平分线的垂线,垂足为P.则P的轨迹为(  )
A.抛物线B.椭圆C.D.双曲线

查看答案和解析>>

同步练习册答案