精英家教网 > 高中数学 > 题目详情
18.若幂函数f(x)=xm+1在区间(0,+∞)是单调减函数,则实数m的取值范围是(-∞,-1).

分析 利用幂函数的单调性即可得出.

解答 解:∵幂函数f(x)=xm+1在(0,+∞)上是减函数,
∴m+1<0,解得m<-1,
故答案为:(-∞,-1).

点评 本题考查了幂函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若离散型随机变量X的分布列函数为P(X=k)=$\frac{k}{10}$,k=1,2,3,4,则P(X>1)=(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-3ax-1,(a≠0).
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有且只有一个交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x-alnx+$\frac{b}{x}$在x=1处取得极值.
(Ⅰ)求a与b满足的关系式;
(Ⅱ)若a>3,求函数f(x)的单调区间;
(Ⅲ)若a>3,函数g(x)=a2x2+3,若存在m1,m2∈[$\frac{1}{2}$,2],使得|f(m1)-g(m2)|<9成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC的AB边中点为D,AC=1,BC=2,则$\overrightarrow{AB}$•$\overrightarrow{CD}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x(2lnx-ax)有两个极值点,则实数a的取值范围是(  )
A.(-∞,0)B.(0,$\frac{1}{2}$)C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某农场有一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)种植地,农场主计划对其合理利用,其中扇形AOB区域用于种植作物甲出售,△BOC区域用于种植作物乙出售,其余区域用于种植作物丙不出售,已知种植作物甲的利润是40元/平方米;种植作物乙的利润是80元/平方米;种植作物丙的成本是20元/平方米.
(1)设∠AOB=θ(单位:弧度,0<θ<π),用θ表示弓形BCD的面积f(θ);
(2)求总利润最大时cosθ的大小,并计算此时作物乙的种植面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知A船在灯塔C北偏东80°处,距离灯塔C为2km,B船在灯塔C北偏西40°,A、B两船的距离为3km,则∠ABC的余弦值$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+y2-2x-8=0,直线l:x+ay-3a=0.
(1)当直线l与圆C相切时,求实数a的值;
(2)当直线l与圆C相交于A、B两点,且AB=4$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

同步练习册答案