精英家教网 > 高中数学 > 题目详情
7.若离散型随机变量X的分布列函数为P(X=k)=$\frac{k}{10}$,k=1,2,3,4,则P(X>1)=(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

分析 利用分布列,直接求解P(X>1)即可.

解答 解:离散型随机变量X的分布列函数为P(X=k)=$\frac{k}{10}$,k=1,2,3,4,
则P(X>1)=P(X=2)+P(X=3)+P(X=4)=$\frac{2}{10}$+$\frac{3}{10}$$+\frac{4}{10}$=$\frac{9}{10}$.
故选:D.

点评 本题考查离散型随机变量X的分布列,互斥事件概率的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知:直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程.
(1)l′与l平行,且l′与l间的距离等于5;
(2)l′与l垂直且l′与两坐标轴围成的三角形面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点A(1,0)和B(2,1)的直线的倾斜角为(  )
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某篮球运动员在上赛季的三分球命中率为25%,场均三分球出手10次,教练建议他在新赛季减少三分球出手次数,若在新赛季的第一场比赛中该球员计划出手3次,每次出手均相互独立,设其命中X次.
(1)若将频率视为概率,求X的分布列;
(2)请给该队员一些建议,如何才能提高他在一场比赛中的三分球得分的期望?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为$\frac{2}{3}$,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=$\frac{1}{12}$,P(X=2)=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(1)若函数f(x)=lnx-ax有极值,则函数f(x)的单调递增区间是(0,$\frac{1}{a}$);
(2)若函数g(x)=xlnx-$\frac{1}{2}$ax2-x有极值,则实数a的取值范围是(-∞,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知AB是经过抛物线y2=2px的焦点的弦,若点A、B的横坐标分别为1和$\frac{1}{4}$,则该抛物线的准线方程为(  )
A.x=1B.x=-1C.x=$\frac{1}{2}$D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-2x.
(1)求函数f(x)的极值;
(2)证明:当x>0时,曲线y=x2恒在曲线y=ex的下方;
(3)讨论函数g(x)=x2-aex(a∈R)零点的个数.
参考公式:alogaN=N(a>0,a≠1,N>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若幂函数f(x)=xm+1在区间(0,+∞)是单调减函数,则实数m的取值范围是(-∞,-1).

查看答案和解析>>

同步练习册答案