(1)证明 ∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x), 2分
∴f(x)是以4为周期的周期函数, 4分
(2)解 当0≤x≤1时,f(x)=
x,
设-1≤x≤0,则0≤-x≤1,∴f(-x)=
(-x)=-
x.
∵f(x)是奇函数,∴f(-x)=-f(x),
∴-f(x)=-
x,即f(x)=
x. 7分
故f(x)=
x(-1≤x≤1) 8分
又设1<x<3,则-1<x-2<1,
∴f(x-2)=
(x-2), 10分
又∵f(x-2)=-f(2-x)=-f((-x)+2)=-[-f(-x)]=-f(x),
∴-f(x)=
(x-2),
∴f(x)=-
(x-2)(1<x<3). 11分
∴f(x)=
12分
由f(x)="-"
,解得x=-1.
∵f(x)是以4为周期的周期函数.
∴f(x)="-"
的所有x="4n-1" (n∈Z). 14分
令0≤4n-1≤2 009,则
≤n≤
,
又∵n∈Z,∴1≤n≤502 (n∈Z),
∴在[0,2 009]上共有502个x使f(x)="-"
. 16分