分析 由tanα,tanβ是方程x2+3$\sqrt{3}$x+4=0的两个根,根据韦达定理表示出两根之和与两根之积,表示出所求角度的正切值,利用两角和的正切函数公式化简后,将表示出的两根之和与两根之积代入即可求出tan(α+β)的值,然后根据两根之和小于0,两根之积大于0,得到两根都为负数,根据α与β的范围,求出α+β的范围,再根据特殊角的三角函数值,由求出的tan(α+β)的值即可求出α+β的值.
解答 解:依题意得tanα+tanβ=-3$\sqrt{3}$<0,tanα•tanβ=4>0,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{-3\sqrt{3}}{1-4}$=$\sqrt{3}$.
依题意知tanα<0,tanβ<0,又α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴α∈(-$\frac{π}{2}$,0),β∈(-$\frac{π}{2}$,0),
∴α+β∈(-π,0),
∴α+β=-$\frac{2π}{3}$.
故答案为:-$\frac{2π}{3}$
点评 此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值,是一道中档题.本题的关键是找出α+β的范围.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分必要条件 | B. | 充分非必要条件 | ||
| C. | 必要非充分条件 | D. | 既非充分又非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{2}$ | B. | -2 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com