| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由(1+z)(1+2i)=i,得到$z=\frac{-1-i}{1+2i}$,再利用复数代数形式的乘除运算化简,求出复平面内表示复数z的点的坐标,则答案可求.
解答 解:由(1+z)(1+2i)=i,
得$z=\frac{-1-i}{1+2i}=\frac{(-1-i)(1-2i)}{(1+2i)(1-2i)}=\frac{-3+i}{5}$=$-\frac{3}{5}+\frac{1}{5}i$,
则复平面内表示复数z的点的坐标为:($-\frac{3}{5}$,$\frac{1}{5}$),位于第二象限.
故选:B.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\sqrt{2}$-1,$\sqrt{2}$-1) | B. | (-$\sqrt{2}$-1,1) | C. | (1,+∞) | D. | (-$\sqrt{2}$-1,$\sqrt{2}$-1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 5或6 | D. | 6或7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $±\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com