分析 根据已知的约束条,画出满足约束条件的可行域,将式子进行变形,再分析目标函数的几何意义,结合图象即可给出目标函数的取值范围.
解答
解:约束条件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$对应的平面区域如下图示:
设k=$\frac{y}{x}$,则z表示可行域内的点(x,y)与点(0,0)连线的斜率,$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$可得B(1,2),
由$\left\{\begin{array}{l}{x+y=3}\\{2x-y=3}\end{array}\right.$可得A(1,2)
由图可知k的最大值为kOB=2,最小值为kOA=$\frac{1}{2}$,
$\frac{y}{x}$的取值范围是[$\frac{1}{2}$,2],
又$\frac{{{x^2}+{y^2}}}{xy}$=$\frac{x}{y}$+$\frac{y}{x}$=k+$\frac{1}{k}$在[$\frac{1}{2}$,1]上单调递减,在[1,2]上递增,
则当t=1时,z=1+1=2,
当t=$\frac{1}{2}$时,z=$\frac{1}{2}$+2=$\frac{5}{2}$,
∴$\frac{{{x^2}+{y^2}}}{xy}$的取值范围是[2,$\frac{5}{2}$].
故答案为:[2,$\frac{5}{2}$]
点评 本题主要考查线性规划的应用,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 10 | C. | 12 | D. | 4+log25 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com