【题目】已知椭圆
的长轴长为4,且经过点
.
(1)求椭圆的方程;
(2)直线
的斜率为
,且与椭圆相交于
,
两点(异于点
),过
作
的角平分线交椭圆于另一点
.证明:直线
与坐标轴平行.
科目:高中数学 来源: 题型:
【题目】某省
年开始将全面实施新高考方案.在
门选择性考试科目中,物理、历史这两门科目采用原始分计分;思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为
,
,
,
,
共
个等级,各等级人数所占比例分别为
、
、
、
和
,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.
(1)某校生物学科获得
等级的共有10名学生,其原始分及转换分如下表:
原始分 | 91 | 90 | 89 | 88 | 87 | 85 | 83 | 82 |
转换分 | 100 | 99 | 97 | 95 | 94 | 91 | 88 | 86 |
人数 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
现从这10名学生中随机抽取3人,设这3人中生物转换分不低于
分的人数为
,求
的分布列和数学期望;
(2)假设该省此次高一学生生物学科原始分
服从正态分布
.若
,令
,则
,请解决下列问题:
①若以此次高一学生生物学科原始分
等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留为整数)
②现随机抽取了该省
名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记
为被抽到的原始分不低于
分的学生人数,求
取得最大值时
的值.
附:若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年泉州市农村电商发展迅猛,成为创新农产品交易方式、增加农民收入、引导农业供给侧结构性改革、促进乡村振兴的重要力量,成为乡村振兴的新引擎.2019年大学毕业的李想,选择回到家乡泉州自主创业,他在网上开了一家水果网店.2019年双十一期间,为了增加水果销量,李想设计了下面两种促销方案:方案一:购买金额每满120元,即可抽奖一次,中奖可获得20元,每次中奖的概率为
(
),假设每次抽奖相互独立.方案二:购买金额不低于180元时,即可优惠
元,并在优惠后的基础上打九折.
(1)在促销方案一中,设每10个抽奖人次中恰有6人次中奖的概率为
,求
的最大值点
;
(2)若促销方案二中,李想每笔订单得到的金额均不低于促销前总价的八折,求
的最大值;
(3)以(1)中确定的
作为
的值,且当
取最大值时,若某位顾客一次性购买了360元,则该顾客应选择哪种促销方案?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线C的参数方程为
(
为参数),曲线
上异于原点的两点
,
所对应的参数分别为
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)当
时,直线
平分曲线
,求
的值;
(2)当
时,若
,直线
被曲线
截得的弦长为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述.例如,同一种生物体的身长、体重等指标.随着“绿水青山就是金山银山”的观念不断的深入人心,环保工作快速推进,很多地方的环境出现了可喜的变化.为了调查某水库的环境保护情况,在水库中随机捕捞了100条鱼称重.经整理分析后发现,鱼的重量x(单位:kg)近似服从正态分布
,如图所示,已知
.
![]()
(Ⅰ)若从水库中随机捕捞一条鱼,求鱼的重量在
内的概率;
(Ⅱ)(ⅰ)从捕捞的100条鱼中随机挑出6条鱼测量体重,6条鱼的重量情况如表.
重量范围(单位:kg) |
|
|
|
条数 | 1 | 3 | 2 |
为了进一步了解鱼的生理指标情况,从6条鱼中随机选出3条,记随机选出的3条鱼中体重在
内的条数为X,求随机变量X的分布列和数学期望;
(ⅱ)若将选剩下的94条鱼称重做标记后立即放生.两周后又随机捕捞1000条鱼,发现其中带有标记的有2条.为了调整生态结构,促进种群的优化,预备捕捞体重在
内的鱼的总数的40%进行出售,试估算水库中鱼的条数以及应捕捞体重在
内的鱼的条数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春节,一场突如其来的新型冠状病毒感染的肺炎疫情,牵动着我们每个人的心,严重扰乱了大家的正常生活,在全国人民的共同努力下,疫情得到了有效的控制.已知某市A,B,C三个小区的志愿者人数分别为60,40,20,现采用分层抽样的方法从这120名志愿者中随机抽取6人去支援夕阳红敬老院.若再从这6人中随机抽取2名作为负责人,则这2名志愿者来自不同小区的概率是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
为平面直角坐标系
中的一个动点(其中
为坐标系原点),点
到定点
的距离比到直线
的距离大1,动点
的轨迹方程为
.
(1)求曲线
的方程;
(2)若过点
的直线
与曲线
相交于
、
两点.
①若
,求直线
的直线方程;
②分别过点
,
作曲线
的切线且交于点
,是否存在以
为圆心,以
为半径的圆与经过点
且垂直于直线
的直线
相交于
、
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量
(百件)与月份
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程
,其中
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com