精英家教网 > 高中数学 > 题目详情
1.设g(x)=x-1,已知f(x)=$\left\{\begin{array}{l}{2g({x}^{2})-g(x-1),g(2x)≤g(x)}\\{g(x)-g({x}^{2}),g(2x)>g(x)}\end{array}\right.$,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是($\frac{6-\sqrt{3}}{8}$,1).

分析 化简f(x)=$\left\{\begin{array}{l}{2{x}^{2}-x,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$,从而作出其图象,结合图象可得0<m<$\frac{1}{4}$,从而分别讨论x1,x2,x3,再令y=x12+x22+x32=$\frac{1-2\sqrt{1+8m}+1+8m}{16}$+1-2m,化简并利用换元法求取值范围即可.

解答 解:∵g(x)=x-1,f(x)=$\left\{\begin{array}{l}{2g({x}^{2})-g(x-1),g(2x)≤g(x)}\\{g(x)-g({x}^{2}),g(2x)>g(x)}\end{array}\right.$,
f(x)=$\left\{\begin{array}{l}{2{x}^{2}-2-(x-2),2x-1≤x-1}\\{x-1-({x}^{2}-1),2x-1>x-1}\end{array}\right.$;
即f(x)=$\left\{\begin{array}{l}{2{x}^{2}-x,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$;
作出其图象如下,

若方程f(x)=m有三个根,
则0<m<$\frac{1}{4}$,
且当x>0时,方程可化为-x2+x-m=0,
易知,x2+x3=1,x2x3=m;
当x≤0时,方程可化为x2-x-m=0,
可解得x1=$\frac{1-\sqrt{1+8m}}{4}$;
记y=x12+x22+x32=$\frac{1-2\sqrt{1+8m}+1+8m}{16}$+1-2m
=-$\frac{3}{2}$m-$\frac{1}{8}$$\sqrt{1+8m}$+$\frac{9}{8}$;
令t=$\sqrt{1+8m}$∈(1,$\sqrt{3}$),
则y=-$\frac{3}{16}$t2-$\frac{1}{8}$t+$\frac{21}{16}$,
解得,y∈($\frac{6-\sqrt{3}}{8}$,1).
故答案为:($\frac{6-\sqrt{3}}{8}$,1).

点评 本题考查了分段函数的应用及数形结合的思想应用,同时考查了换元法的应用及方程的根与函数的图象的交点的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在中央军委的决策部署下,全军广大青年官兵广泛开展“强素质,练打赢,当尖兵”的技能比武大赛,某海军陆战队A队现有9名侦察兵去参加军区举办的“超级战士”大赛,该活动有A、B、C三个比赛项目,恰好各有3名战士进入三个比赛项目.
(1)若A、B、C三个比赛项目所对应的分数为5分、4分、3分,从中随机抽取2名战士(假设各人被抽取的可能性是均等的且参加的战士都不能获得相应的分数),再将他们的成绩求和,求抽取战士的成绩和恰好为8分的概率.
(2)假设A队和另一支B队各有9名战士参加比赛,若分数用百分制来计算.茎叶图如图所示;已知A队9位战士的平均成绩为80分.①求x的值及A队9位战士成绩的方差;②根据茎叶图及其数字特征分析,哪个陆战队成绩较好,成绩更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sin(α-$\frac{π}{5}$)=a(a≠±1,a≠0),求cos(α+$\frac{14π}{5}$)tan(α-$\frac{11π}{5}$)+$\frac{tan(α+\frac{9π}{5})}{cos(\frac{26π}{5}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=$\left\{\begin{array}{l}{lnx,1≤x≤3}\\{-2lnx,\frac{1}{3}≤x≤1}\end{array}\right.$,g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[$\frac{ln3}{3}$,$\frac{1}{2e}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若关于x的方程2-|x|-x2+a=0有两个不相等的实数解,则实数a的取值范围是(  )
A.(-1,+∞)B.[-1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,某大风车的半径为2米,每12秒沿逆时针方向匀速旋转一周,它的最低点O离地面1米.风车圆周上一点A从最低点O开始,运动t秒后与地面距离为h米.
(1)直接写出函数h=f(t)的关系式,并在给出的坐标系中用五点作图法作出h=f(t)在[0,12)上的图象(要列表,描点);
(2)A从最低点O开始,沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.经研究:经过抛物线的焦点弦的两个端点的切线的交点一定在抛物线的准线上:现用实例证明这个结论,已知抛物线f(x)=$\frac{{x}^{2}}{8}$的焦点弦AB,分别过点A,B作抛物线的切线,两切线交点N
(1)证明:点N的纵坐标是一个定值t;
(2)已知g(x)=8f(x)-(a-t)x+alnx,讨论g(x)的单调性
(3)若不等式g(x)=2f(x)+(2+t)x-alnx≥0(a>0)恒成立,求证:$\frac{ln{2}^{2}}{{2}^{2}}+\frac{ln{3}^{2}}{{3}^{2}}+\frac{ln{4}^{2}}{{4}^{2}}+…+\frac{ln{n}^{2}}{{n}^{2}}≤\frac{n-1}{e}$(其中e是自然对数的底数,n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且椭圆C的离心率为$\frac{1}{2}$.
(I)求椭圆C的方程;
(Ⅱ)若动点P在直线x=-1上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P作直线l⊥MN.证明:直线l恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据十八大的精神,全国在逐步推进教育教学制度改革,各高校自主招生在高考录取中所占的比例正在逐渐加大.对此,某高校在今年的自主招生考试中制定了如下的规则:笔试阶段,考生从6道备选试题中一次性抽取3道题,并独立完成所抽取的3道题,至少正确完成其中2道试题则可以进入面试.已知考生甲正确完成每道题的概率为$\frac{2}{3}$,且每道题正确完成与否互不影响;考生乙能正确完成6道试题中的4道题,另外2道题不能完成.(Ⅰ)求考生甲至少正确完成2道题的概率;
(Ⅱ)求考生乙能通过笔试进入面试的概率;
(Ⅲ)记所抽取的三道题中考生乙能正确完成的题数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案