| A. | $-\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
分析 根据三角恒等变换化简函数f(x)为正弦型函数,根据$x∈[-\frac{π}{3},\frac{π}{3}]$求出函数f(x)的最小值.
解答 解:函数$f(x)=\sqrt{2}sin\frac{x}{4}cos\frac{x}{4}+\sqrt{6}{cos^2}\frac{x}{4}-\frac{{\sqrt{6}}}{2}$
=$\frac{\sqrt{2}}{2}$sin$\frac{x}{2}$+$\frac{\sqrt{6}}{2}$(1+cos$\frac{x}{2}$)-$\frac{\sqrt{6}}{2}$
=$\sqrt{2}$($\frac{1}{2}$sin$\frac{x}{2}$+$\frac{\sqrt{3}}{2}$cos$\frac{x}{2}$)
=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$),
当$x∈[-\frac{π}{3},\frac{π}{3}]$时,$\frac{x}{2}$+$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{π}{2}$],
∴sin($\frac{x}{2}$+$\frac{π}{3}$)∈[$\frac{1}{2}$,1];
∴函数f(x)=$\sqrt{2}$sin($\frac{x}{2}$-$\frac{π}{3}$)的最小值为$\frac{\sqrt{2}}{2}$.
故选:B.
点评 本题考查了三角恒等变以及正弦型函数的图象与性质的应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=一$\frac{π}{6}$ | B. | x=$\frac{π}{6}$ | C. | x=$\frac{24π}{25}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6,-8 | B. | -6,-9 | C. | -8,-9 | D. | 6,-9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com