精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4,
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的单调区间.

分析 (Ⅰ)求函数的导数,根据导数的几何意义求出函数的切线斜率以及f(2),建立方程组关系即可求a,b的值;
(Ⅱ)求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间.

解答 解:(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4,
∴当x=2时,y=2(e-1)+4=2e+2,即f(2)=2e+2,
同时f′(2)=e-1,
∵f(x)=xea-x+bx,
∴f′(x)=ea-x-xea-x+b,
则$\left\{\begin{array}{l}{f(2)=2{e}^{a-2}+2b=2e+2}\\{f'(2)={e}^{a-2}-2{e}^{a-2}+b=e-1}\end{array}\right.$,
即a=2,b=e;
(Ⅱ)∵a=2,b=e;
∴f(x)=xe2-x+ex,
∴f′(x)=e2-x-xe2-x+e=(1-x)e2-x+e=(1-x+ex-1)e2-x
∵e2-x>0,
∴1-x+ex-1与f′(x)同号,
令g(x)=1-x+ex-1
则g′(x)=-1+ex-1
由g′(x)<0,得x<1,此时g(x)为减函数,
由g′(x)>0,得x>1,此时g(x)为增函数,
则当x=1时,g(x)取得极小值也是最小值g(1)=1,
则g(x)≥g(1)=1>0,
故f′(x)>0,即f(x)的单调区间是(-∞,+∞),无递减区间.

点评 本题主要考查导数的应用,根据导数的几何意义,结合切线斜率建立方程关系以及利用函数单调性和导数之间的关系是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知{an}是等差数列,Sn是其前n项和,若a1+a22=-3,S5=10,则a9的值是20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)讨论函数f(x)=$\frac{x-2}{x+2}$ex的单调性,并证明当x>0时,(x-2)ex+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)=$\frac{{e}^{x}-ax-a}{{x}^{2}}$(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设$\overrightarrow{a}$,$\overrightarrow{b}$是向量,则“|$\overrightarrow{a}$|=|$\overrightarrow{b}$|”是“|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:

(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(-$\frac{5}{2}$)+f(2)=-2.

查看答案和解析>>

同步练习册答案