精英家教网 > 高中数学 > 题目详情
19.下面是关于复数z=$\frac{2}{-1+i}$的四个命题:P1:|z|=2;P2:z2=2i;P3:z的共轭复数为1+i;P4:z的虚部为-1.其中的真命题个数为2.

分析 复数z=$\frac{2}{-1+i}$=-1-i.再利用复数的有关概念即可判断出结论.

解答 解:复数z=$\frac{2}{-1+i}$=$\frac{-2(1+i)}{(1-i)(1+i)}$=-1-i.
P1:|z|=$\sqrt{(-1)^{2}+(-1)^{2}}$=$\sqrt{2}$,因此不正确;
P2:z2=(-1-i)2=2i,正确;
P3:z的共轭复数为-1+i,不正确;
P4:z的虚部为-1,正确.
其中的真命题个数为2.
故答案为:2.

点评 本题考查了复数的运算法则及其有关知识,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,已知斜三棱柱ABC-A1B1C1中,底面ABC是等边三角形,侧面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求证:BC⊥AB1
(Ⅱ)若AB=a,AB1=$\frac{\sqrt{6}}{2}$a,求三棱锥C-ABB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知在四棱锥P-ABCD中,底面ABCD为菱形且∠ADC=120°,E,F分别是AD,PB的中点且PD=AD
(1)求证:EF∥平面PCD;
(2)若∠PDA=60°,求证:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A=PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆(x-2)2+y2=4,则过抛物线y2=4x的焦点的直线与已知圆相交的最短弦长等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)在x=x0处导数存在,若p:f′(x0)=0;q:x=x0是f(x)的极值点,则p是q的(  )
A.充分不必要条件B.充要条件
C.必要不充条件D.既非充分条件也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面上三点A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)若三点A,B,C不能构成三角形,求实数k应满足的条件;
(2)若△ABC中角A为直角,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1=1,延长AC至D,使AC=CD,连接BD,B1D,C1D
(1)求证:AC1⊥B1D;
(2)求六面体BB1-A1ADC1的体积;
(3)求平面B1C1D与平面ABC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$(x∈R),设△ABC的内角A,B,C对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=0.
(1)求C的值.
(2)若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={x|$\frac{x-3}{x+1}$<0},N={x|x≤-1},则集合{x|x≥3}等于(  )
A.M∩NB.M∪NC.R(M∩N)D.R(M∪N)

查看答案和解析>>

同步练习册答案