分析 (1)A,B,C不能构成三角形,从而可得到A,B,C三点共线,从而有$\overrightarrow{BC}∥\overrightarrow{AC}$,这样根据平行向量的坐标关系即可得出关于k的方程,解方程即得实数k应满足的条件;
(2)根据$\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}$可求出向量$\overrightarrow{AB}$的坐标,而根据A为直角便有AB⊥AC,从而可得到$\overrightarrow{AB}•\overrightarrow{AC}=0$,这样即可建立关于k的方程,解方程便可得出k的值.
解答 解:(1)由三点A,B,C不能构成三角形,得A,B,C在同一直线上;
即向量$\overrightarrow{BC}$与$\overrightarrow{AC}$平行;
∴4(2-k)-2×3=0;
解得k=$\frac{1}{2}$;
(2)∵$\overrightarrow{BC}$=(2-k,3),∴$\overrightarrow{CB}$=(k-2,-3);
∴$\overrightarrow{AB}$=$\overrightarrow{AC}$+$\overrightarrow{CB}$=(k,1);
当A是直角时,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,即$\overrightarrow{AB}$•$\overrightarrow{AC}$=0;
∴2k+4=0;
∴k=-2.
点评 考查三点可构成三角形的充要条件,平行向量的坐标关系,向量坐标的加法和数乘运算,向量垂直的充要条件,以及数量积的坐标运算.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | [-1,0] | C. | [-1,1] | D. | [-$\frac{1}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com