精英家教网 > 高中数学 > 题目详情
如图,已知AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线AD交⊙O于D,过点D作DE⊥AC交AC的延长线于点E,OE交AD于点F.若
AC
AB
=
3
5
,求
AF
FD
的值.
考点:与圆有关的比例线段
专题:直线与圆
分析:连接OD,BC,设BC交OD于点M,则∠OAD=∠ODA,从而∠ODA=∠DAE,OD∥AE,又AC⊥BC,且DE⊥AC,从而BC∥DE.进而四边形CMDE为平行四边形,由此能求出
AF
FD
解答: 本小题满分(10分)
解:连接OD,BC,设BC交OD于点M.
∵OA=OD,∴∠OAD=∠ODA,
又∵∠OAD=∠DAE,∴∠ODA=∠DAE,
∴OD∥AE,又∵AC⊥BC,且DE⊥AC,∴BC∥DE.
∴四边形CMDE为平行四边形,∴CE=MD
AC
AB
=
3
5
,设AC=3x,AB=5x,则OM=
3
2
x
,又OD=
5
2
x

∴MD=
5
2
x
-
3
2
x
=x,∴AE=AC+CE=4x,
∵OD∥AE,∴
AF
FD
=
AE
OD
=
4x
5
2
x
=
8
5
点评:本题考查两线段比值的求法,是中档题,解题时要认真审题,注意圆的性质和平行四边形性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是某篮球联赛中,甲、乙两名运动员12个场次得分的茎叶图.设甲、乙两人得分的平均数分别为
.
x
.
x
,中位数分别为m,m,则(  )
A、
.
x
.
x
mm
B、
.
x
.
x
mm
C、
.
x
.
x
mm
D、
.
x
.
x
mm

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(sin2x,cos2x),
b
=(sin2x,-cos2x),f(x)=
a
b
+4cos2x+2
3
sinxcosx.如果?m∈R,对?x∈R都有f(x)≥f(m),则f(m)等于(  )
A、2+2
3
B、3
C、0
D、2-2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径是3
3
的⊙O中,AB是直径,MN是过点A的⊙O的切线,AC,BD相交于点P,且∠DAN=30°,CP=2,PA=9,又PD>PB,则线段PD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若空间几何体的三视图如图所示,则该几何体体积为(  )
A、
4
3
B、
4
3
3
C、
8
3
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=|x-3|+1,g(x)=kx,若函数F(x)=f(x)-g(x) 有两个零点,求k的范围.
(2)函数h(x)=
4-x2
,m(x)=2x+b,若方程h(x)=m(x)有两个不等的实根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个几何体的三视图如图所示,那么该几何体的表面积是(  )
A、5+
2
B、7
C、7+
2
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
mx+n
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

(1)求实数m,n的值
(2)用定义证明f(x)在(-1,1)上是增函数.

查看答案和解析>>

同步练习册答案