精英家教网 > 高中数学 > 题目详情
若空间几何体的三视图如图所示,则该几何体体积为(  )
A、
4
3
B、
4
3
3
C、
8
3
D、8
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图知:几何体是底面为边长为2正方形,顶点在底面中的射影为正方形一边的中点,根据三视图判断相关几何量的数据,代入棱锥的体积公式计算.
解答: 解:由三视图知:几何体是底面为边长为2正方形,顶点在底面中的射影为正方形一边的中点,
所以几何体体积为
1
3
×2×2×2
=
8
3

故选C.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

偶函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(-∞,0)上是减函数,f(6)=0,设g(θ)=2cos2θ+msinθ-
17
4
m,当g(θ)<0且f[g(θ)]>0恒成立时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在?ABCD中,AB=2,AD=1,∠DAB=60°,F为DC的中点,E为线段BC上的一个点,若
AE
AF
=
15
4
,则
AE
AB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形么BDC内接于圆,BD=CD,过C点的圆的切线与AB的延长线交于E点.
(I)求证:∠EAC=2∠DCE;
(Ⅱ)若BD⊥AB,BC=BE,AE=2,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线AD交⊙O于D,过点D作DE⊥AC交AC的延长线于点E,OE交AD于点F.若
AC
AB
=
3
5
,求
AF
FD
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sin
x
2
)
b
=(0,cos
x
2
)
,x∈R,若函数f(x)=2+sinx-|a-b|2,且函数g(x)的图象与函数f(x)的图象关于原点成中心对称.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)-λf(x)+1在x∈[-
π
2
π
2
]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半圆O中,C是圆O上一点,直径AB⊥CD,垂足为D,DE⊥BC,垂足为E,若AB=6,AD=1,则CE•BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy中,点P(x,y),Q(x,-2),且以线段PQ为直径的圆经过原点O.
(1)求动点P的轨迹C;
(2)过点M(0,-2)的直线l与轨迹C交于两点A、B,点A关于y轴的对称点为A′,试问直线A′B是否恒过一定点,若是,并求此定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2>lnx+1对任意x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案