精英家教网 > 高中数学 > 题目详情
已知在平面直角坐标系xoy中,点P(x,y),Q(x,-2),且以线段PQ为直径的圆经过原点O.
(1)求动点P的轨迹C;
(2)过点M(0,-2)的直线l与轨迹C交于两点A、B,点A关于y轴的对称点为A′,试问直线A′B是否恒过一定点,若是,并求此定点;若不是,请说明理由.
考点:直线与圆锥曲线的综合问题,轨迹方程
专题:圆锥曲线中的最值与范围问题
分析:(1)由于以线段PQ为直径的圆经过原点O,可得
OP
OQ
=0,即可得出;
(2)由题意可知直线l的斜率存在,设直线l的方程为:y=kx-2,A(x1,y1),B(x2,y2),则A′(-x1,y1).与抛物线方程联立可得x2-2kx+4=0,由△>0,可得k>2或k<-2.得到根与系数的关系,而直线直线A′B的方程为:y-y1=
y2-y1
x2+x1
(x+x1),把根与系数的关系代入可得2y=(x2-x1)x+4,令x=0,即可得出直线恒过定点.
解答: 解:(1)∵以线段PQ为直径的圆经过原点O,
OP
OQ
=0,
∴(x,y)•(x,-2)=x2-2y=0,
化为x2=2y,
∴动点P的轨迹C为抛物线:x2=2y.
(2)由题意可知直线l的斜率存在,
设直线l的方程为:y=kx-2,A(x1,y1),B(x2,y2),则A′(-x1,y1).
联立
y=kx-2
x2=2y

化为x2-2kx+4=0,
△=4k2-16>0,
解得k>2或k<-2.
∴x1+x2=2k,x1x2=4.
直线直线A′B的方程为:y-y1=
y2-y1
x2+x1
(x+x1),
又∵y1=kx1-2,y2=kx2-2,
∴2ky-2k(kx1-2)=(kx2-kx1)x+kx1x2-k
x
2
1

化为2y=(x2-x1)x+x1(2k-x1),
∵x1(2k-x1)=4,
∴2y=(x2-x1)x+4,
令x=0,则y=2,
∴直线A′B恒过一定点(0,2).
点评:本题考查了抛物线的标准方程及其性质、数量积运算性质、直线与抛物线相交转化为方程联立可得根与系数的关系、直线过定点问题,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设两个命题p、q,其中p:?x∈R,不等式x2+2x-1>0恒成立;q:当
3
4
<a<1时,函数f(x)=(4a-3)x在R上为减函数,则下列命题为真命题的是(  )
A、p∧qB、¬p∧¬q
C、¬p∧qD、p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

若空间几何体的三视图如图所示,则该几何体体积为(  )
A、
4
3
B、
4
3
3
C、
8
3
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(-
3
2
,cosωx),
b
=(1,
3
cosωx-sinωx)(ω>0),f(x)=
a
b
,若f(x)的最小正周期是π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在区间[
π
12
12
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个几何体的三视图如图所示,那么该几何体的表面积是(  )
A、5+
2
B、7
C、7+
2
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,AB,AC的长度均为1,它们的夹角为60°,则|
AB
+2
CA
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
满足|
a
|=
1
2
,|
b
|=3,x是
b
a
的方向上的正射影的数量,则函数y=|
a
|x
的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a
1-x2
+
1+x
+
1-x
的最大值为g(a),求g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+blnx,其中b<0,求函数f(x)的极值点.

查看答案和解析>>

同步练习册答案