精英家教网 > 高中数学 > 题目详情

【题目】已知集合,集合,且集合满足.

1)求实数的值;

2)对集合,其中,定义由中的元素构成两个相应的集合:,其中是有序数对,集合中的元素个数分别为,若对任意的,总有,则称集合具有性质.

①请检验集合是否具有性质,并对其中具有性质的集合,写出相应的集合

②试判断的大小关系,并证明你的结论.

【答案】(1)(2)①不具有性质具有性质,证明见解析

【解析】

1)先求得集合所包含的元素,根据,求得的值.

2)根据(1)求得,由此求得.

①根据性质的定义,判断出不具有性质具有性质.根据集合的定义求得.

②根据①所求,求得,由此比较出两者的大小关系.

1)对于集合开口向下,对称轴为,当,故

对于集合,由,解得,所以.

根据题意,所以,解得

经检验,不符合,故舍去,满足题意,即.

2)由(1)得.

,故不具有性质

中任意元素,故具有性质;根据集合的定义,求得

①知,,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)解方程

2)令,求的值.

3)若是定义在上的奇函数,且对任意恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有一企业2007年建厂并开始投资生产,年份代号为7,2008年年份代号为8,依次类推.经连续统计9年的收入情况如下表(经数据分析可用线性回归模型拟合的关系):

年份代号(

7

8

9

10

11

12

13

14

15

当年收入(千万元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求关于的线性回归方程

(Ⅱ)试预测2020年该企业的收入.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在OAB中,顶点A的坐标是(30),顶点B的坐标是(12),记OAB位于直线左侧图形的面积为f(t)

1)求函数f(t)的解析式;

2)设函数,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线,动直线过定点.

1)若直线与圆相切,求直线的方程;

2)若直线与圆相交于两点,点MPQ的中点,直线与直线相交于点N.探索是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,若的子集,把中的所有数的和称为容量(规定空集的容量为0),若的容量为奇(偶)数,则称的奇(偶)子集,命题①:的奇子集与偶子集个数相等;命题②:当时,的所有奇子集的容量之和与所有偶子集的容量之和相等,则下列说法正确的是(

A.命题①和命题②都成立B.命题①和命题②都不成立

C.命题①成立,命题②不成立D.命题①不成立,命题②成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的极值点的个数;

(2)若恒成立的最大值

参考数据:

1.6

1.7

1.8

4.953

5.474

6.050

0.470

0.531

0.588

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数其中

(1)时,讨论函数的单调性;

(2)若函数仅在处有极值,求的取值范围;

(3)若对于任意的不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过的直线交于两点,点的坐标为.当轴时,的面积为.

(1)求椭圆的标准方程;

(2)设直线的斜率分别为,证明:.

查看答案和解析>>

同步练习册答案